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The World as a Hologram

» The Covariant Entropy Bound is a relation between
information and geometry. RB 1999
» Motivated by holographic principle.
Bekenstein 1972; Hawking 1974
't Hooft 1993; Susskind 1995; Susskind and Fischler 1998

» Conjectured to hold in arbitrary spacetimes, including
cosmology.

» The entropy on a light-sheet is bounded by the difference
between its initial and final area in Planck units.

» If correct, origin must lie in quantum gravity.



A Proof of the Covariant Entropy Bound

» In this talk | will present a proof, in the regime where
gravity is weak (Gh — 0).

» Though this regime is limited, the proof is interesting.
» No need to assume any relation between the entropy and

energy of quantum states, beyond what quantum field
theory already supplies.

» This suggests that quantum gravity determines not only
classical gravity, but also nongravitational physics, as a
unified theory should.



Covariant Entropy Bound



Surface-orthogonal light-rays

3

» Any 2D spatial surface B bounds four (2+1D) null
hypersurfaces

» Each is generated by a congruence of null geodesics
(“light-rays”™) L B



Light-sheets

time
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Out of the 4 orthogonal directions, usually at least 2 will
initially be nonexpanding.

The corresponding null hypersurfaces are called
light-sheets.



The Nonexpansion Condition
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0 <0 <« nonexpansion
everywhere on the light-sheet.




Covariant Entropy Bound

In an arbitrary spacetime, choose an arbitrary
two-dimensional surface B of area A. Pick any
light-sheet of B.

Then S < A/4Gh, where S is the entropy on
the light-sheet.

RB 1999



Example: Closed Universe

S3
S.p. N.p.
(a)

» S(volume of most of S3) > A(S?)

» The light-sheets are directed towards the “small”
interior, avoiding an obvious contradiction.



Example: Flat FRW universe

r=0 null infinity

» Sufficiently large spheres at fixed time t are anti-trapped
» Only past-directed light-sheets are allowed
» The entropy on these light-sheets grows only like R?



Example: Collapsing star

singularity

null
) infinity
event horizon

star

» At late times the surface of the star is trapped
» Only future-directed light-sheets exist
» They do not contain all of the star



Generalized Covariant Entropy Bound

increasing decreasing A
area

area

If the light-sheet is terminated at finite cross-sectional
area A’, then the covariant bound can be strengthened:

A—A
<
S< 4Gh




Generalized Covarlant Entropy Bound

For a given matter system, the tightest bound is obtained
by choosing a nearby surface with initially vanishing
expansion.

Bending of light implies
A-A=AAxGh.

Hence, the bound remains nontrivial in the weak-gravity
regime (Gh — 0). RB 2003



Entropy AS



How is the entropy defined?

» In cosmology, and for well-isolated systems: usual,
“intuitive” entropy. But more generally?
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How is the entropy defined?

» In cosmology, and for well-isolated systems: usual,
“intuitive” entropy. But more generally?

» Quantum systems are not sharply localized. Under what
conditions can we consider a matter system to “fit" on L?

» The vacuum, restricted to L, contributes a divergent
entropy. What is the justification for ignoring this piece?

In the Gh — 0 limit, a sharp definition of S is possible.



Vacuum-subtracted Entropy

Consider an arbitrary state pgonal- In the absence of gravity,
G = 0, the geometry is independent of the state. We can
restrict both pgiona and the vacuum |0) to a subregion V:

P ter Pglobal
po = tr_v|0)(0]

The von Neumann entropy of each reduced state diverges like
A/e?, where A is the boundary area of V, and ¢ is a cutoff.
However, the difference is finite as ¢ — 0:

AS = 8(p) — S(ro) -



Properties of Vacuum-subtracted Entropy

» For excitations that are well localized to the interior of V,
one recovers the “intuitive entropy”, AS ~ S(pgiobal)



Properties of Vacuum-subtracted Entropy

» For excitations that are well localized to the interior of V,
one recovers the “intuitive entropy”, AS ~ S(pgiobal)

» For an incoherent superposition of n light species,
S(pgiobar) diverges logarithmically with n.
But AS saturates. — No Species Problem

» Physically, an observer with access only to V cannot
discriminate an arbitrary number of species, due to thermal
effects.



Modular Energy AK



Relative Entropy

Given any two states, the (asymmetric!) relative entropy

S(plpo) = —trplog po — S(p)

satisfies positivity and monotonicity: under restriction of p and
po to a subalgebra (e.g., a subset of V), the relative entropy
cannot increase.



Modular Hamiltonian

Definition: Let pg be the vacuum state, restricted to some
region V. Then the modular Hamiltonian, K, is defined up to a
constant by

oK
tre=K -~

The modular energy is defined as

po =

AK =trKp —trKpg



A Central Result

Positivity of the relative entropy implies immediately that
AS < AK.

To complete the proof, we must compute AK and show that

AA
< —=.
AK_4Gh



Light-sheet Modular Hamiltonian

In finite spatial volumes, the modular Hamiltonian K is nonlocal.
But we consider a portion of a null plane in Minkowski:

= t—-x=0;
t+x:0<xT<1.

In this case, K simplifies dramatically.



Free Case

» The vacuum on the null plane factorizes over its null
generators.

» The vacuum on each generator is invariant under a special
conformal symmetry.

Thus, we may obtain the modular Hamiltonian by application of
an inversion, x™ — 1/x™, to the (known) Rindler Hamiltonian
on x* € (1,00). We find

K= zg/dd 2y/ dxT g(xT) Ty

with
g(x*) =x*(1 —x7).



Interacting Case

In this case, it is not possible to define AS and K directly on the
light-sheet. Instead, consider the null limit of a spatial slab:

(a) (b) ©)



Interacting Case

We cannot compute AK on the spatial slab.

However, it is possible to constrain the form of AS by
analytically continuing the Rényi entropies,

Sp=(1—-n)""logtrp",

ton=1.



Interacting Case

The Rényi entropies can be computed using the replica trick,

as the expectation value of a pair of defect operators inserted at
the boundaries of the slab. In the null limit, this becomes a null
OPE to which only operators of twist d-2 contribute. The only
such operator in the interacting case is the stress tensor, and it
can contribute only in one copy of the field theory.

This implies

Z A I L
AS:? d yodx g(xT) Toy .



Interacting Case

Because AS is the expectation value of a linear operator, it

follows that
AS = AK

for all states.
This is possible because the operator algebra is

infinite-dimensional; yet any given operator is eliminated from
the algebra in the null limit.



Once More, With Feeling

The Rényi entropies for an interval A involve the two point
function of defect operators D inserted at the endpoints of the
interval.

An operator in the i CFT becomes an operator in the (i + 1)

CFT when we go around the defect.
Take the limit in which the interval becomes null.



Once More, With Feeling

Light-like OPE: Take x®> — 0 with x™ = x° + x" held fixed.
The expansion of two scalar operators has the form

O(x)0(0) ~ D |x| 270+ (x )% O,
k

Here s, = spin, A, = scaling dimension.

We see that the twist 7, = Ax — s, governs the approach to the
light-like limit.

For finite x*, we sum over all contributions with a given twist.



Once More, With Feeling

In d > 2 we consider instead a spatial slab, with codimension 2
defect operators inserted.

Then we take the limit in which the slab becomes null.



Once More, With Feeling

Spacelike OPE of defect operators:

D(x)D(0) ~ exp { / d9-2y [Z |X|d12AkOk(X = O,y)] }
k

where y denotes the transverse dimensions and O, denotes
local operators on the defect at x = 0. Thus the expansion is
local in y.



Once More, With Feeling

Light-like defect OPE:

D(x)D(0) ~ exp { / d? 2y [Z \X!(dz)”k(X*)skOk,sk] } :
k



Once More, With Feeling

The leading term in the OPE is given by the identity operator
and contributes a factor of A, /|x|9~2 in the exponent (with a
coefficient that depends on n), where Ay is the transverse area.

This is the expected form of trpJ = e~("=1)5n the vacuum Rényi
entropies for the slab. In the vacuum case, all other operators
have vanishing expectation values.

This contribution cancels when we compute the difference A S,
so we need not consider it further.



Once More, With Feeling

In an interacting theory, all operators with spin greater than 2
are expected to have twist strictly larger than d — 2. The twist is
expected to increase as the spin increases.

The only operator with spin 2 and twist d — 2 is the stress
tensor.

We argue that operators with lower spin have twist > d 2 and
must appear in pairs for symmetry reasons — no contrlbutlon.



Once More, With Feeling

The generic form of the operators in the expansion is
O=0102--0On,

where Oy is an operator on the k™ copy of the original CFT.

For d > 2, the leading twist operators have only one factor
which is not the identity (the stress tensor). Performing the
replica trick, they contribute to the entropy proportionally to an
operator in the original CFT:

Ssingle = <OS> :

Such contributions are linear in the density matrix, and
therefore do not give rise to a non-zero value of AK — AS.

K is the only operator localized to the region whose expectation
value coincides with AS to linear order for any deviation from
the vacuum state.



Once More, With Feeling

All of the descendants of T, . contribute as well, so the OPE
becomes a Taylor expansion around x* = 0:

Da(x)D3(0) ~ exp {—(n ~ter [ a2y [ Lot gn(x+)T++]} .
0



Once More, With Feeling

The vacuum-subtracted von Neumann entropy is then given by
analytic continuation:

AS = lim (1 — n)~"log(Dp(x)Dn(0))
n—1
1
=2r / d? %y / dxTg(x")Ti (x™ =0,x7,y)
0
=AK.

The function g is as yet undetermined.



Interacting Case

We thus have

o

AK =
n

d?- 2y/ axt g(xt) Tyy .

Known properties of the modular Hamiltonian of a region and
its complement further constrain the form of g(x™):
9(0)=0,g'(0) =1, g(x") =g(1 — x¥),and |g'| < 1.
| will now show that these properties imply

AK < AA/AGh

which completes the proof.



Interacting Case

For interacting theories with a gravity dual we are able to
compute g(x*) from the area of extremal surfaces:
Ryu and Takayanagi (2006)
Hubeny, Rangamani and Takayanagi (2007)
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For d > 2, we find

gxt) £ xT(1 = x*).



Area Loss AA



Area Loss in the Weak Gravity Limit

Integrating the Raychaudhuri equation twice, one finds
1 1
AA= —/ axTO(xT) = —0p + 87rG/ axt (1 —x) Ty .
0 0

at leading order in G.
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Area Loss in the Weak Gravity Limit

Integrating the Raychaudhuri equation twice, one finds
AA = —/01 axTO(xT) = —0p + 87rG/O1 axt (1 —x) Ty .
at leading order in G. Compare to AK:
AK = 2;/01 axtg(x") Ty .

Since 6 <0 and g(x*) < (1 — x;), we have AK < AA/4Gh
if we assume the Null Energy Condition, T, > 0.



Violations of the Null Energy Condition

v

It is easy to find quantum states for which T, < 0.

Explicit examples can be found for which AS > AA/4Gh, if
6o = 0.

Perhaps the Covariant Entropy Bound must be modified if
the NEC is violated?

E.g., evaporating black holes

v

v

v

Lowe 1999
Strominger and Thompson 2003
Surprisingly, we can prove S < (A — A’)/4 without
assuming the NEC.

v



Negative Energy Constrains 6,

>

If the null energy condition holds, 6y = 0 is the “toughest
choice for testing the Entropy Bound.

However, if the NEC is violated, then 6y = 0 does not
guarantee that the nonexpansion condition holds
everywhere.

To have a valid light-sheet, we must require that
1
0> 0(x") = o + 87TG/ dx* Tou(X7) |
x+t

holds for all x* € [0, 1].
This can be accomplished in any state.
But the light-sheet may have to contract initially:

0o ~ O(Gh) < 0 .



Proof of AK < AA/4Gh

Let F(xT) = xT + g(x*). The properties of g imply F' > 0,
F(0) =0, F(1) = 1.

By nonexpansion, we have 0 > f01 F' 6 dx*, and thus
B < 87rG/dX+[1 — F(xM)| oy . (1)
For the area loss, we found
—/01 axTo(xT) = —0p + 87TG/01 dxt(1—x")Ty . (2)

Combining both equations, we obtain

AA

+ 4yt
4Gﬁ_ h/dx (x) T4 = AK. (3)



Monotonicity

v

In all cases where we can compute g explicitly, we find that
it is concave:
g// S 0

v

This property implies the stronger result of monotonicity:

As the size of the null interval is increased, AS — AA/4Gh
is nondecreasing.

No general proof yet.

v

v



Covariant Bound vs. Generalized Second Law

» The Covariant Entropy Bound applies to any null
hypersurface with < 0 everywhere.

» |t constrains the vacuum subtracted entropy on a finite null
slab.

» The GSL applies only to causal horizons, but does not
require 6 < 0.

» It constrains the entropy difference between two nested
semi-infinite null regions.

» Limited proofs exist for both, but is there a more direct
relation?
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