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When is entanglement captured by
semiclassical geometry?

e Y- Always

e M -Sometimes (depending on the state, depending on the
probe,...)

e N - Never
e (Who’s asking?)

Can we provide a quantitative criteria given:

1. The probe (what is the minimal information on the
probe).

2. The state (what is the minimal information on the state).

QM toy models => AdS/CFT models



Basic criteria:

1. Ggr = G|z (no entropy suppression)

2. G >>STD(G)

Not quite enough: existence of wormhole depends on the
spectral properties of the probe.



Eternal BH vs. Thermal AdS
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S>>1, free field (bulk)



Random operators vs. structured
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No entropy suppression in LR vs. RR. But still no wormhole.

There is a semiclassical solution — a Euclidean AdS instanton
which tunnels into two Mink. AdS.



A ER bridge can exist only in a case of a
1) The probe is a random matrix

2) The Hamiltonian is a random matrix.



Fixed energy ensemble

H states with energies between (E-A, E+A)

Entangled state in H ;*H¢ |, i.e.
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Structured vs. unstructured pieces of the operator

Denote the probe operator by O. We would like to study how it
acts on states which make the black hole — say some ensemble
of states with at a given energy. The states of the black hole
contain some unspecified information about the state “behind
the horizon” and also about particles outside the horizon. We
are interested in how the operator acts on the former degrees of

freedom.

In the Eikonal approximation we are interested in geodesic which
graze the horizon, or go through it.



Also in Eikonal, for such geodesics, if there is a semiclassical
description and no firewall, we can expect

G=eMm

If there is some benign firewall then maybe

G=A*e™, A->asthe firewall becomes less benign.

However, right now we only have a toy model for such correlators

in QM. We need to be able to

1) Incoroprate conformal invariance, which will give us access to
different m’s.

2) Incorporate large-N limit, to have a semiclassical space to start
with.

Both seem to be doable.



The unstructured piece of O is a random matrix, M;; taken
from some distribution (in the basis of energy eigenstates
with dense spectrum)
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Invariance under U(e®) <> maximal ignorance/difficulty
assumption
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Determination of the normalization via “finite total
cross section”
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Single sided correlator
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Two sided correlator
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Standard deviations:
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Perturbation theory?
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Interactions:

(M, GM,..M G, M,)

Interactions can be encoded in joint distribution of the random
matrices on the BH states
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which can give rise to a vertex '\/



Not perturbation theory?

Cy = E(M{M{M,My) Gy =B (MM MM, )

1) The M’s are field operators which insert a particle/
extract an anti-particle.

2) All the M’s are the same operator, the indices just
denote different time insertions.
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In an ordinary Wick contraction, there are two contractions in
each protocol, with similar strength.



In the large random matrix computation there is a planarity
restriction
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One contraction is excluded by planarity. The kinematics
corresponds to the intersection of geodesics where one is
infalling and one is outgoing, very close to the horizon.



Energy changing ensemble
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At large t, we can localize to the pole in P (with the smallest
imaginary part) and obtain an exponential decay of the
correlator. l.e. Pole of P < quasi normal modes.



Single and two sided correlator  |v.) = Z Cij|?
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Shenker-Stanford configurations:
Length and randomness
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e shocks << e



Recall that G = e2° [tr(U)|2 = e™

so when U goes away from the identity, the length increases.
For U which is close to identity U = !¢, G fixed, a taken to zero.
This will increase | by a little (this does not work by itself. There
is some kinematic dressing that one needs to do).

The state is generated by shock waves made by some operator
acting on the boundaries. Such operators are random
operators. So G can be taken from a random ensemble
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Consider concatenating two shocks
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