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When	  is	  entanglement	  captured	  by	  
semiclassical	  geometry?	  

•  Y	  –	  Always	  	  
•  M	  -‐	  Some;mes	  (depending	  on	  the	  state,	  depending	  on	  the	  

probe,…)	  	  
•  N	  -‐	  Never	  	  
•  (Who’s	  asking?)	  

Can	  we	  provide	  a	  quan;ta;ve	  criteria	  given:	  
1.  The	  probe	  (what	  is	  the	  minimal	  informa;on	  on	  the	  

probe).	  
2.  The	  state	  (what	  is	  the	  minimal	  informa;on	  on	  the	  state).	  

QM	  toy	  models	  =>	  AdS/CFT	  models	  



Basic	  criteria:	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  GRR	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  GLR	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  
1.	  GRR	  ≈	  GLR	  	  	  (no	  entropy	  suppression)	  
	  
2.	  G	  >>	  STD(G)	  	  
	  
Not	  quite	  enough:	  existence	  of	  wormhole	  depends	  on	  the	  
spectral	  proper;es	  of	  the	  probe.	  



Eternal	  BH	  vs.	  Thermal	  AdS	  

[3].5 There is some controversy over how general the relation between entanglement and
wormholes is. It was conjectured in [3] that entanglement should be identified with the
existence of a wormhole (ER=EPR). However Marolf and Polchinski [8] used the eigenvalue
thermalization hypothesis (ETH) to argue that the local correlations in a typical entangled
state are weak, and hence should not correspond to a semiclassical wormhole in the bulk.
Shenker and Stanford [9, 10] found examples of special states corresponding to long semi-
classical wormholes, where the local correlations are weak but a smooth wormhole exists.
In this paper we will examine this question using a model based on describing low-energy
probes in the bulk as random matrices acting on the space of states of a black hole. In this
random matrix model we will find a suppression of correlations in the typical state (unlike
for the thermofield double state), in agreement with [8], and argue that this implies that
these typical states do not have a semiclassical wormhole interpretation.

We consider a Hilbert space H = HL ⊗HR, where HL,R are identical and dynamically
independent factors. A particular entangled state in this Hilbert space is the thermofield
double state

|ψβ� =
1

Z(β)

�

i

e−βEi/2|i�L ⊗ |i�R, (1)

where Ei is the energy of the eigenstate labeled by i in the L and R Hilbert spaces, and
Z(β) normalizes the state. Tracing over HL gives a thermal density matrix in HR. This
state can be thought of as a purification of the thermal density matrix and is identified in
AdS/CFT with the eternal black hole in the bulk. One Hilbert space factor is associated
to each of the two asymptotic boundaries, and the entropy of the reduced density matrix
on HR is identified with the area of the horizon, that is, with the minimal cross-sectional
area of the Einstein-Rosen bridge (wormhole) between the asymptotic regions. Thus, the
entropy of the reduced density matrix diagnoses the size of the wormhole. Furthermore, the
entanglement in (1) gives rise to finite “two-sided” correlation functions �OLOR� between
operators supported on HL,R respectively. In AdS space, this correlator is computed in a
suitable approximation from spacelike geodesics which link the two boundaries of spacetime
through the wormhole.

Now consider some more general entangled state on HL ⊗ HR which reduces to the
thermal density matrix when one factor is traced over. Consider CFT operators dual to
supergravity fields for which a probe approximation in the bulk is appropriate (that is, where
the effects of back-reaction of this operator insertion can be neglected; we will assume in
particular that the insertion changes the energy by an amount ∆E � T ) and where the
operator dimension ∆ � 1 so that the geodesic approximation [11] to bulk correlators
is reliable.6 Then the existence of a wormhole would imply that the two-point function
between insertions of this operator in the two entangled copies of the field theory, �OLOR�,
will be given by a geodesic passing through the wormhole, and hence should be of roughly
the same order as the two-point function in a single copy of the CFT, �OROR�; we would
not expect it to be suppressed by any factor of the dimension of the Hilbert space. Thus, if
the two-point function �OLOR� is exponentially suppressed relative to �OROR� by factors

5In a related development based on the Ryu-Takayanagi expression for the entanglement entropy in field
theory in terms of minimal surfaces in AdS space [4], the areas of bulk surfaces have been reconstructed
from a “differential entropy” measured from the entanglement structure of the field theory state [5, 6]. This
may be related to the proposal in [7] to reconstruct the bulk spacetime fron the entanglement structure of
the field theory state using tensor network techniques from condensed matter physics.

6We will also include objects like D-branes in this class. These two limits can be simultaneously realized
by making the temperature T or the typical energy of the entangled states sufficiently large.
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Wormhole:	  
	  
High	  temperature	  phase	  
of	  AdS	  black	  hole	  
	  
S>>1	  strongly	  coupled	  
plasma.	  
	  
	  

No	  wormhole:	  
	  
-‐ 	  Begin	  with	  energy	  below	  the	  
HP	  phase	  transi;on.	  
-‐ 	  Keep	  in	  the	  microcanonical	  
ensemble,	  and	  pump	  energy	  
in.	  

S>>1,	  free	  field	  (bulk)	  



Random	  operators	  vs.	  structured	  

two spaces in an entangled state. Nonetheless, the two-sided two-point functions remain of

the same order as the one-sided ones. For the field theory, this is automatic: since we are in

a thermal state, the one- and two-sided correlators are related by analytic continuation as in

section 3.3.1. In the bulk, these large two-sided correlators can be understood through the

existence of a connection between the two boundaries in the Euclidean section. (So we can

still interpret the two-sided correlator in terms of a geodesic length, �OLOR� ∼ e
−∆�

, where

� is now the length of a geodesic in the Euclidean instanton linking the two boundaries.)

But there is no Lorentzian wormhole linking the two AdS spaces. From the Lorentzian point

of view, these correlators are large because of the entanglement between the bulk modes in

the two thermal AdS spaces.

The von Neumann entropy of the reduced density matrix on one side below this transi-

tion is order one, so one might think that the absence of a smooth wormhole in this case is

associated with the small amount of entanglement between the two sides. But if we work in

the microcanonical ensemble, we can increase the energy to reach regimes where the entropy

is large where the disconnected saddle is still the dominant bulk solution.
16

In our analysis, this phase is qualitatively different from the black hole phase because

the gravity mode operators acting on thermal AdS will not behave like random operators;

probing a thermal gas in AdS, these operators are sensitive to the differences between

different states. They are sparse operators which are related in a specific way to the states

that make up the ensemble, i.e, they are “structured” with the respect to the states. Thus,

it is possible that what makes the difference between the geometric connection in the black

hole case and its absence here is that in the former we had large correlations for random

operators, whereas here we have them for some operators which are structured with respect

to the states.

We now present a simple model to make the point that gravity modes will be structured

operators in this phase. Consider a Hilbert space made out of many harmonic oscilators

with frequencies w1, ....wk, with total energy H = Σniwi. In the AdS/CFT picture, these

are the energies of the single particle states in the bulk. We will denote the states by |�n�
where �n is a vector of integers of length k, which tells us the particle number for each energy

level wi. When we need to distinguish a specific particle - particle l - from the rest we will

denote the state as |�n, nl�. The operators that we use to probe the geometry are then the

corresponding raising or lowering operators. That is, we have at our disposal operators

Ti, i = 1..k, and our model for their action is

< �n, ni|T
i
|�m,mi >= δ�n,�m

�
δni+1,mi + δni,mi+1

�
(60)

where the i’th index is dropped from �n and �m. These operators are clearly not generating

random transitions between the energy eigenstates; instead, the operator matrix elements

are sparse matrices.

Consider now the state
1√
Z

�

�n

e
−βE�n/2|�n,�n�. (61)

This could be thought of as either 1) a model of the canonical ensemble in the full CFT for

temperatures below the Hawking-Page transition, or 2) a canonical description of the gas

of gravity modes when pushed to T � 1, in the regime where it is locally stable. We can

16
In the microcanonical ensemble, the thermal gas of gravitons is the dominant phase up to a Hagedorn

transition, at energies set by the ’t Hooft coupling in the field theory; thus the entropy will grow up to some

power of the ’t Hooft coupling [23].

19

compare the single and two sided correlators of the structured operators Ti in this state. A
simple calculation gives

�T (1)
1 (t)T (1)

1 (0)� = e−iw1t + eiw1t−βw1 , (62)

while
�T (2)

1 (t)T (1)
1 (0)� =

�
e−iw1t + eiw1t

�
e−βw1/2. (63)

The interpretation is simplest for the case that w1β � 1, i.e, a probe which is heavy
compared to the temperature. In this case the first term in (62) is just the particle freely
traversing the thermal space. The result in (63) is suppressed by a factor of e−βw1/2. This
reproduces the suppression one would expect from propagation throughout the Euclidean
instanton, where the disconnected initial time surfaces correspond to the constant time
slices at τ = 0,β/2.

6 Black holes and random operators

We conclude with a more speculative section. The main conjecture in this paper is that
low energy gravity modes are well approximated by random operators on any state which
appears as a black hole for an outside observer, and that using this approximation we
can find a simple criteria for when an Einstein-Rosen throat is semi-classical. Since most
discussions of the information paradox [24] or firewalls [25] are phrased in terms of such
probes, it will be interesting to explore the consequences of their conjectured randomness in
this regard. We briefly discuss some issues in this direction, which are the robust analytic
structure of such operators and the problem of “seeing behind the horizon”, and the possible
emergence of a new perturbation theory for random operators, with some speculations on
instances where this perturbation theory exhibits unusual behaviour for probes which cross
close to the horizon.

6.1 The analytic structure of random operators in pure states

We modelled supergravity probes as random because they are insensitive to the details
of the black hole state. One might think this would make it difficult to get any sensible
coherent behaviour behind the horizon. However, precisely the opposite is true. Since the
correlations don’t depend on the state, we get an effective coarse-graining over the possible
microstates of the black hole. As a result, the analytic structure of random operators is
more robust than for more structured operators, allowing us to carry out the continuation
to the “other side” for a large class of ensembles or states on HR.

To see this recall equations (38), (39) and (42) above, which gave the same single
sided two point function for any generic single sided state or density matrix (up to 1/N2

corrections),17 so the single sided correlation functions do not depend on the particular
state we consider, they all mimic the thermal density matrix. This means that in any such
state or density matrix we can continue to the second copy in exactly the same way. This
result relies heavily on the random matrix aspect of the probes, and it seems unlikely to us
to hold without some assumption on the spectral properties of the probe operators.

Thus, if we are in any of these density matrices, the value of the single-sided two point
function is as in the thermal ensemble. Just as for the thermal ensemble, we can then

17By generic state we mean a state that we do not arrange using the spectral data of OR. For example
we do not allow ourselves to find the eigenvectors of OR and then choose one of them as our state.
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No	  entropy	  suppression	  in	  LR	  vs.	  RR.	  But	  s;ll	  no	  wormhole.	  
	  
There	  is	  a	  semiclassical	  solu;on	  –	  a	  Euclidean	  AdS	  instanton	  
which	  tunnels	  into	  two	  Mink.	  AdS.	  	  	  



A	  ER	  bridge	  can	  exist	  only	  in	  a	  case	  of	  a	  	  
1)  The	  probe	  is	  a	  random	  matrix	  	  
2)  The	  Hamiltonian	  is	  a	  random	  matrix.	  



Fixed	  energy	  ensemble	  

HE	  states	  with	  energies	  between	  (E-‐Δ,	  E+Δ)	  
	  
Entangled	  state	  in	  HE,R*HE,L,	  i.e.	  
	  
	  

[3].5 There is some controversy over how general the relation between entanglement and
wormholes is. It was conjectured in [3] that entanglement should be identified with the
existence of a wormhole (ER=EPR). However Marolf and Polchinski [8] used the eigenvalue
thermalization hypothesis (ETH) to argue that the local correlations in a typical entangled
state are weak, and hence should not correspond to a semiclassical wormhole in the bulk.
Shenker and Stanford [9, 10] found examples of special states corresponding to long semi-
classical wormholes, where the local correlations are weak but a smooth wormhole exists.
In this paper we will examine this question using a model based on describing low-energy
probes in the bulk as random matrices acting on the space of states of a black hole. In this
random matrix model we will find a suppression of correlations in the typical state (unlike
for the thermofield double state), in agreement with [8], and argue that this implies that
these typical states do not have a semiclassical wormhole interpretation.

We consider a Hilbert space H = HL ⊗HR, where HL,R are identical and dynamically
independent factors. A particular entangled state in this Hilbert space is the thermofield
double state

|ψβ� =
1

Z(β)

�

i

e−βEi/2|i�L ⊗ |i�R, (1)

where Ei is the energy of the eigenstate labeled by i in the L and R Hilbert spaces, and
Z(β) normalizes the state. Tracing over HL gives a thermal density matrix in HR. This
state can be thought of as a purification of the thermal density matrix and is identified in
AdS/CFT with the eternal black hole in the bulk. One Hilbert space factor is associated
to each of the two asymptotic boundaries, and the entropy of the reduced density matrix
on HR is identified with the area of the horizon, that is, with the minimal cross-sectional
area of the Einstein-Rosen bridge (wormhole) between the asymptotic regions. Thus, the
entropy of the reduced density matrix diagnoses the size of the wormhole. Furthermore, the
entanglement in (1) gives rise to finite “two-sided” correlation functions �OLOR� between
operators supported on HL,R respectively. In AdS space, this correlator is computed in a
suitable approximation from spacelike geodesics which link the two boundaries of spacetime
through the wormhole.

Now consider some more general entangled state on HL ⊗ HR which reduces to the
thermal density matrix when one factor is traced over. Consider CFT operators dual to
supergravity fields for which a probe approximation in the bulk is appropriate (that is, where
the effects of back-reaction of this operator insertion can be neglected; we will assume in
particular that the insertion changes the energy by an amount ∆E � T ) and where the
operator dimension ∆ � 1 so that the geodesic approximation [11] to bulk correlators
is reliable.6 Then the existence of a wormhole would imply that the two-point function
between insertions of this operator in the two entangled copies of the field theory, �OLOR�,
will be given by a geodesic passing through the wormhole, and hence should be of roughly
the same order as the two-point function in a single copy of the CFT, �OROR�; we would
not expect it to be suppressed by any factor of the dimension of the Hilbert space. Thus, if
the two-point function �OLOR� is exponentially suppressed relative to �OROR� by factors

5In a related development based on the Ryu-Takayanagi expression for the entanglement entropy in field
theory in terms of minimal surfaces in AdS space [4], the areas of bulk surfaces have been reconstructed
from a “differential entropy” measured from the entanglement structure of the field theory state [5, 6]. This
may be related to the proposal in [7] to reconstruct the bulk spacetime fron the entanglement structure of
the field theory state using tensor network techniques from condensed matter physics.

6We will also include objects like D-branes in this class. These two limits can be simultaneously realized
by making the temperature T or the typical energy of the entangled states sufficiently large.
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involving the dimension of the space in which the entanglement occurs (that is, the entropy
of the reduced density matrix in one copy of the Hilbert space), we take this as evidence
that the state does not correspond to a semi-classical wormhole.

In Sec. 2, we will argue that the low-energy gravity probes we’re interested in can be
approximated as random matrices acting on the space of states of a black hole, because
of the inability of low-energy supergravity modes to probe typical states of black holes
[12, 13, 14]. This leads to our key methodological innovation: the matrix elements of a
given operator are modelled by a matrix drawn at random from some suitable ensemble.
Given that the operator O can be modelled by a random matrix, we can approximate
the correlator �OLOR� by an average over the operator ensemble. This gives us a simple
calculation to test the validity of the wormhole interpretation for a given state.

Modelling the probe by a random matrix is a stronger statement than the usual idea
that excitations of a thermodynamic system thermalize to local thermal equilibrium; in an
ordinary system like a lump of coal, we have some spatial resolution for our probes, so the
excitation does not act totally randomly in that it will initially excite some local subset of
degrees of freedom. Probing black holes is supposed to be more difficult, in that once the
excitation has fallen into the black hole it is no longer localized to a subset of the degrees
of freedom but acts truly randomly.

In section 3, we treat the gravity probes as matrices acting on the states with energy
in some narrow range (E − ∆, E + ∆), defining a microcanonical Hilbert space HE , of
dimension dE = eS(E). We use a uniform random matrix ensemble on HE to model the
operators. This allows us to do computations in states

|ψU� =
1

dE

�

i,j∈HE

Uij |i�L ⊗ |j�R (2)

where Uij is some unitary matrix. For all of these states, tracing over one Hilbert space
space factor gives the maximally mixed density matrix

ρE =
1

dE
IE . (3)

with entanglement entropy S(E). One of these states is the microcanonical analogue of (1):
|ψ� = (1/Z(β))

�
i e

−βEi |i�L ⊗ |i�R ∼ e−S(E)/2�
i |i�L ⊗ |i�R. The question is whether the

“two-sided” two-point functions �ψU|OLOR|ψU� could be interpreted in terms of a wormhole
in AdS. We find that it is suppressed relative to (1) by a factor of 1/dE ∼ e−S , where S
is the entropy of the reduced density matrix. By contrast, if we pick U to be the identity
(i.e. the state is the microcanonical analogue of the thermally entangled state (1)) this
suppression vanishes. Thus, the two-sided correlators in generic states |ψU� with the same
entanglement entropy as the thermal state do not have the structure expected to allow a
dual description in terms of a classical wormhole.

The uniform random matrix ensemble of operators on HE provides a basic approxi-
mation to the properties of low-energy supergravity modes, but it does not fully capture
the physics of the correlation functions of these operators, notably their time dependence.
In section 4 we show that by introducing more general matrix ensembles where we allow
transitions between states of different energies, we can reproduce the exponential decay
of correlators determined by the quasi-normal modes in the AdS description, supporting
our proposal that physics of probes of complex gravitational states can be understood in
terms of the dynamics of random matrices. The ensembles introduced in Sec. 4 also allow

3

operators as random operators does not capture all aspects of the operators, it should
capture precisely the part that we need. This is because the issue of whether there is a
semiclassical wormhole or not is an issue of what happens behind the horizon.

Thus, low energy gravity modes act, to a good approximation, as random matrices on
the states of the black hole. In other words, gravity modes encode the minimum possible
information about the actual microstates of black holes. We will thus treat the matrix
elements of a given operator O as drawn at random from a suitable matrix ensemble. We
will define the ensembles of interest in the next two sections.

In this paper, we use this random matrix description to provide a criterion for the
existence of a wormhole in the dual gravitational description of a typical entangled state.
As argued in the introduction, we would expect states with a wormhole interpretation to
have the property that the two-sided correlator �OLOR� is of the same order as the one-
sided correlator �OROR�. Given the random matrix description, we can approximate these
correlators by considering the average over the matrix ensemble that the operators are
drawn from. For simple matrix ensembles, it is then easy to test this criterion in generic
entangled states.

The use of an ensemble average is also supported by the fact that in the geodesic
approximation, the bulk two-point function calculation is largely insensitive to the details
of the individual operator being considered, depending only on its conformal dimension.
One might however still be concerned that the average could be suppressed relative to the
value for a particular operator by phase cancellation. But in section 3 we will see that when
we consider the state (1) the average remains of the same order as for a given operator, which
provides some evidence against this possibility. We will also see that standard deviations
in the ensemble averages are exponentially small.

3 Entanglement vs wormholes: fixed energy

In this section, we consider entangled states which involve energy eigenstates lying in a
narrow range of energies, and restrict attention to operators acting within this energy
range. That is, we work with states belonging to the subspace HE ⊗HE ⊂ HL⊗HR, where
HE contains exact energy eigenstates |i� ∈ HE with eigenvalues Ei ∈ [E −∆, E +∆], and
we assume that there is a large density of states at these energies. Entangled states can be
written in this energy basis as

|ψc� =
�

i,j

cij |i, j� with
�

i,j

|cij |2 = 1 (6)

where |i, j� = |i�L ⊗ |j�R.
A particularly interesting subset of quantum pure states in HE ⊗HE is defined by the

property that tracing over HL gives rise to the microcanonical ensemble, i.e. the maximally
mixed density matrix

ρE =
1

dE

�

i∈HE

|i��i| = IE
dE

, (7)

where dE = eS(E) is the dimension of HE . We will denote this set of states in the Hilbert

6



Structured	  vs.	  unstructured	  pieces	  of	  the	  operator	  
	  

Denote	  the	  probe	  operator	  by	  O.	  We	  would	  like	  to	  study	  how	  it	  
acts	  on	  states	  which	  make	  the	  black	  hole	  –	  say	  some	  ensemble	  
of	  states	  with	  at	  a	  given	  energy.	  The	  states	  of	  the	  black	  hole	  
contain	  some	  unspecified	  informa;on	  about	  the	  state	  “behind	  
the	  horizon”	  and	  also	  about	  par;cles	  outside	  the	  horizon.	  We	  
are	  interested	  in	  how	  the	  operator	  acts	  on	  the	  former	  degrees	  of	  
freedom.	  
	  
In	  the	  Eikonal	  approxima;on	  we	  are	  interested	  in	  geodesic	  which	  
graze	  the	  horizon,	  or	  go	  through	  it.	  
	  

space by HU .
8
It includes all the states in HE ⊗HE of the form

|ψU� = e−S/2
�

i,j

Uij |i, j� (8)

for any unitary matrix U ∈ U(dE). These states have the same amount of entanglement as

the state

|ψmicro� = |ψI� = e−S/2
�

i∈HE

|i, i� (9)

which provides the standard purification of the single sided microcanonical density matrix.
9

Restricting to states with the same reduced density matrix is useful because it allows us to

see clearly that the details and not just the overall amount of entanglement between the

two Hilbert spaces plays a key role in the emergence of a smooth wormhole. We will study

how single sided and two sided correlators behave in various |ψc� and |ψU�.
In subsection 3.1 we define the operator ensemble we consider, which is just the ensemble

of gaussian random matrices in HE . In section 3.2 we evaluate single sided correlators in

the various states. In section 3.3 we compute the two sided correlators for various states,

and compare them with the single sided correlators on the same states. In section 3.4 we

compute the standard deviations of the various correlators.

3.1 Operator averaging & random matrices

To model operators that act within HE we will assume that operator matrix elements are

drawn from the simplest Gaussian distribution

Fr =
1

ZM
r

dMijdM
∗
ij e

−γtr(M M†), (10)

where we denote the matrix elements �i|O|j� as Mij ∀ |i�, |j� ∈ HE , and ZM
r is a normal-

ization factor, chosen so that
�
Fr = 1. We will refer to this as the restricted operator

ensemble, as it applies to operators which are restricted to act within HE . This ensemble

is assumed to be universal for all operators acting within this Hilbert space. We consider

calculations where we take the ensemble average within the ensemble of operators (10),

keeping the state |ψc� fixed.
This choice of ensemble is motivated by simplicity: it is the gaussian matrix ensemble

invariant under unitary transformations of HE which depends only on the dimensionality

of HE .
10

The gaussian assumption amounts to a sort of free-field approximation for the

operators, as in the ensemble (10) the only non-trivial connected correlation function is the

two point function

E
�
M∗

ijMkl

�
=

1

γ
δikδjl . (11)

(We will use the notation E to stress that we are taking expectation values in our oper-

ator ensemble.) Thus, when we insert operators in higher-point correlation functions, the

ensemble expectation values will be determined by a Wick-like pair-wise contraction of in-

sertions of operators using (11) (after appropriately summing over the indices). This should

8
Note that HU is not a subspace of the Hilbert space as a vector space, as the requirement that the

reduced density matrix is (7) is not a linear constraint on the Hilbert space.
9
This is the microcanonical ensemble equivalent of the thermofield double state (1).

10
This is true assuming that we do not impose any restrictions of hermiticity or unitarity on O.
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9
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see clearly that the details and not just the overall amount of entanglement between the
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Fr = 1. We will refer to this as the restricted operator
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(We will use the notation E to stress that we are taking expectation values in our oper-

ator ensemble.) Thus, when we insert operators in higher-point correlation functions, the

ensemble expectation values will be determined by a Wick-like pair-wise contraction of in-

sertions of operators using (11) (after appropriately summing over the indices). This should
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Note that HU is not a subspace of the Hilbert space as a vector space, as the requirement that the
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Also	  in	  Eikonal,	  for	  such	  geodesics,	  if	  there	  is	  a	  semiclassical	  
descrip;on	  and	  no	  firewall,	  we	  can	  expect	  
	  
G	  ≈	  e-‐ml	  
	  

If	  there	  is	  some	  benign	  firewall	  then	  maybe	  
	  
G	  ≈	  A	  *	  e-‐ml	  ,	  	  A	  -‐>	  as	  the	  firewall	  becomes	  less	  benign.	  
	  
	  

However,	  right	  now	  we	  only	  have	  a	  toy	  model	  for	  such	  correlators	  
in	  QM.	  We	  need	  to	  be	  able	  to	  
1)  Incoroprate	  conformal	  invariance,	  which	  will	  give	  us	  access	  to	  

different	  m’s.	  
2)  Incorporate	  large-‐N	  limit,	  to	  have	  a	  semiclassical	  space	  to	  start	  

with.	  

Both	  seem	  to	  be	  doable.	  
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The	  unstructured	  piece	  of	  O	  is	  a	  random	  matrix,	  Mij	  taken	  
from	  some	  distribu;on	  (in	  the	  basis	  of	  energy	  eigenstates	  
with	  dense	  spectrum)	  

Invariance	  under	  U(eS)	  	  ó	  maximal	  ignorance/difficulty	  
assump;on	  
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Determina;on	  of	  the	  normaliza;on	  via	  “finite	  total	  
cross	  sec;on”	  

è	  



Single	  sided	  correlator	  

be related to the free field approximation in the bulk spacetime, which is valid at leading

order in N in the large N limit of the CFT. We will comment further on corrections from

including higher order polynomials in the ensemble measure and the perturbation theory

around this free-field behaviour in section 6.2.

The ensemble involves a single parameter γ, which depends on the energy E used to

define HE . The scaling of γ with E can be determined by considering the “inclusive cross

section” - starting from a given initial state |i0� ∈ HE , acting on it by the operator O, and

ending in all possible states (in HE). This gives

E




�

k∈HE

|�k|O|i0�|2


 =
eS(E)

γ
, (12)

so requiring that the inclusive cross-section is finite implies

γ = γ̂eS(E), (13)

that is, the parameter γ should scale like the dimension dE = eS(E) of HE .

3.2 Single sided correlators

Since our criterion is based on a comparison between single sided and double sided two-point

functions (to avoid issues related to operator normalization), we will begin by computing

the operator ensemble average of single sided correlators using (10).

We will begin with |ψU�. Since we are computing single sided correlators we can reduce

to the single sided density matrix (7) first:

�ψU|O†

R
(t)OR(0)|ψU� = trHR

�
ρE O†

R
(t)OR(0)

�

= e−S
�

i∈HE ,n∈HR

ei(Ei−En)t|�n|OR|i�|2
(14)

Under the assumption that O acts within HE (which allows us to sum only over |n� ∈ HE),

we can easily estimate the size of this two-point function at t = 0 to be of order one

E
�
�ψU|O†

R
(0)OR(0)|ψU�

�
= e−S

�

i∈HE ,n∈HE

E
�
|�n|OR|i�|2

�
= e−S

e2S

γ
=

1

γ̂
. (15)

Our choice of scaling for γ thus has the nice consequence that correlators allowing a semi-

classical gravitational interpretation are order one, i.e. they do not scale in the dimension

of the microcanonical ensemble dE = eS . Computing the full time dependent operator

ensemble average two-point function is just as easy and it is given by

E
�
�ψU|O†

R
(t)OR(0)|ψU�

�
=

e−S

γ

�

i,n

ei(Ei−En)t =
e−2S

γ̂

��trHE (W (t))
��2 (16)

where W (t) = e−iHt. The time dependence is generated by the slight variations in the

energy in the range from E−∆ to E+∆, which produces only a very slow time variation of

the correlator, on the times scales where we resolve these small energy differences. We will

have a detailed discussion of time dependence in section 4, where we consider an ensemble of

8

where on the left hand side we inserted a complete set of states |j�. The two terms in the
exponential on the right hand side come from the bra and the ket in the correlator. Next,
we can write the imaginary time translation of OR,β1 in the second term on the left hand
side as OR,β1(t

�+ iβ/2) = ei(iβ/2)HOR,β1(t
�)e−i(iβ/2)H . Acting on the state vectors on either

side of OR,β1(t
�) this produces exponential factors that now match between the left and

right hand sides. So we can conclude that �j|ORβ1(t
�)|i� = �i|ÕL,β1(t

�)|j�. In other words
ÕL,β1(t

�) = OR,β1(t
�)T . There is one final subtlety – in the conventional thermofield double

description and in the eternal black hole, global time is defined to run backwards in the
second (L) copy. To be consistent with this convention we should flip the direction of time
for the OL operators If we choose t = 0, t� = 0, to form the initial Cauchy surface and flip
the time direction in HL to align time with global time on both sides, we finally have

OL(t) = ÕL(−t) = OR(−t)T . (21)

In a general state |ψc�, we will therefore consider correlators between an operator OR

acting on HR and the operator OL acting on HL defined by (21). Comparing this two-sided
correlator to the one-sided correlator �OROR� will give us our criterion for the existence of
wormholes.

3.3.2 Two-sided correlators and semiclassical ER bridges

Given a pure state |ψU� ∈ HL ⊗HR, the two point two sided correlator is then

�ψU|O†
R
(t)OL(0)|ψU� = e

−S(E)
�

i,j,k,l

Uij U
�
kl
e
i(El−Ej)t �i|OR(0)|k��l|O†

R
(0)|j� . (22)

The ensemble average is

E
�
�ψU|O†

R
(t)OL(0)|ψU�

�
= e

−S(E)
�

i,j,k,l

Uij U
�
kl
e
i(El−Ej)tE

�
M

�
jl
Mik

�

=
e−2S(E)

γ̂
|tr (U W (t)) |2,

(23)

where we used (11) and W (t) = e−itH .
We would like to compare this expression with the single sided two-point function (16).

It is enough to focus on t = 0. Since the trace is at most of order dE = eS(E), the two sided
correlator is bounded by the single sided one (15), and they are the same only when U ∝ IE .
We interpret this as saying that the wormhole connecting the two spaces is as large or as
semiclassical as it can be when we have the standard purification of the microcanonical
density matrix.

For most choices of U, the correlator will be much smaller. To determine the value for
a typical U, we can consider now drawing U itself uniformly from the ensemble of random
unitary matrices, corresponding to choosing a typical state in HU.

EU
�
E
�
�ψU|O†

R
(0)OL(0)|ψU�

��
=

1

d2
E
γ̂

�

i,j

�
dUUiiU

∗
jj =

1

d3
E
γ̂

�

i,j

δij =
1

d2
E
γ̂
, (24)

where EU stands for the average over the uniform distribution of unitary matrices.12 The

12In a previous version of the paper, we obtained an estimate scaling as 1/dE by diagonalizing U and
assuming that the eigenvalues eiθi are drawn uniformly from the circle. This is not correct, as the Jacobian
factor in passing from the integral over Uij to the eigenvalues introduces an eigenvalue repulsion. This
repulsion produces the additional suppression in the average correlator found here.

10

where on the left hand side we inserted a complete set of states |j�. The two terms in the
exponential on the right hand side come from the bra and the ket in the correlator. Next,
we can write the imaginary time translation of OR,β1 in the second term on the left hand
side as OR,β1(t

�+ iβ/2) = ei(iβ/2)HOR,β1(t
�)e−i(iβ/2)H . Acting on the state vectors on either

side of OR,β1(t
�) this produces exponential factors that now match between the left and

right hand sides. So we can conclude that �j|ORβ1(t
�)|i� = �i|ÕL,β1(t
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Two	  sided	  correlator	  

be related to the free field approximation in the bulk spacetime, which is valid at leading

order in N in the large N limit of the CFT. We will comment further on corrections from

including higher order polynomials in the ensemble measure and the perturbation theory

around this free-field behaviour in section 6.2.

The ensemble involves a single parameter γ, which depends on the energy E used to

define HE . The scaling of γ with E can be determined by considering the “inclusive cross

section” - starting from a given initial state |i0� ∈ HE , acting on it by the operator O, and
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Our choice of scaling for γ thus has the nice consequence that correlators allowing a semi-

classical gravitational interpretation are order one, i.e. they do not scale in the dimension
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ensemble average two-point function is just as easy and it is given by
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where W (t) = e−iHt. The time dependence is generated by the slight variations in the

energy in the range from E−∆ to E+∆, which produces only a very slow time variation of

the correlator, on the times scales where we resolve these small energy differences. We will
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where on the left hand side we inserted a complete set of states |j�. The two terms in the
exponential on the right hand side come from the bra and the ket in the correlator. Next,
we can write the imaginary time translation of OR,β1 in the second term on the left hand
side as OR,β1(t
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description and in the eternal black hole, global time is defined to run backwards in the
second (L) copy. To be consistent with this convention we should flip the direction of time
for the OL operators If we choose t = 0, t� = 0, to form the initial Cauchy surface and flip
the time direction in HL to align time with global time on both sides, we finally have

OL(t) = ÕL(−t) = OR(−t)T . (21)

In a general state |ψc�, we will therefore consider correlators between an operator OR

acting on HR and the operator OL acting on HL defined by (21). Comparing this two-sided
correlator to the one-sided correlator �OROR� will give us our criterion for the existence of
wormholes.

3.3.2 Two-sided correlators and semiclassical ER bridges

Given a pure state |ψU� ∈ HL ⊗HR, the two point two sided correlator is then

�ψU|O†
R
(t)OL(0)|ψU� = e

−S(E)
�

i,j,k,l

Uij U
�
kl
e
i(El−Ej)t �i|OR(0)|k��l|O†

R
(0)|j� . (22)

The ensemble average is

E
�
�ψU|O†

R
(t)OL(0)|ψU�

�
= e

−S(E)
�

i,j,k,l

Uij U
�
kl
e
i(El−Ej)tE

�
M

�
jl
Mik

�

=
e−2S(E)

γ̂
|tr (U W (t)) |2,

(23)

where we used (11) and W (t) = e−itH .
We would like to compare this expression with the single sided two-point function (16).

It is enough to focus on t = 0. Since the trace is at most of order dE = eS(E), the two sided
correlator is bounded by the single sided one (15), and they are the same only when U ∝ IE .
We interpret this as saying that the wormhole connecting the two spaces is as large or as
semiclassical as it can be when we have the standard purification of the microcanonical
density matrix.

For most choices of U, the correlator will be much smaller. To determine the value for
a typical U, we can consider now drawing U itself uniformly from the ensemble of random
unitary matrices, corresponding to choosing a typical state in HU.

EU
�
E
�
�ψU|O†

R
(0)OL(0)|ψU�

��
=

1

d2
E
γ̂

�

i,j

�
dUUiiU

∗
jj =

1

d3
E
γ̂

�

i,j

δij =
1

d2
E
γ̂
, (24)

where EU stands for the average over the uniform distribution of unitary matrices.12 The

12In a previous version of the paper, we obtained an estimate scaling as 1/dE by diagonalizing U and
assuming that the eigenvalues eiθi are drawn uniformly from the circle. This is not correct, as the Jacobian
factor in passing from the integral over Uij to the eigenvalues introduces an eigenvalue repulsion. This
repulsion produces the additional suppression in the average correlator found here.
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average value of the two-sided correlation function is smaller than the single-sided one by a
factor of 1/d2E = e−2S .

We will see below that the standard deviation in the average over operators is larger than
this average, scaling as e−S , so the correct estimate for the two-sided correlator for a partic-
ular operator is smaller than the single-sided one by a factor of 1/dE = e−S . We conclude
that these typical states cannot have a smooth wormhole description in the gravitational
dual. The same conclusion was reached in [8] by appealing to the eigenvalue thermaliza-
tion hypothesis [21, 22]. Our approach based on random matrices gives a different, more
computationally tractable perspective on the result.

It would be interesting to study the behaviour of this two-sided correlation function for
small deformations of U = IE , and compare it to the changes in the length of the wormhole,
which were recently studied by Shenker & Stanford [9, 10]. We leave this for future work.

3.4 Standard deviations

Deviatons within the ensemble give us a measure of the departure of the correlator for
a specific operator from the ensemble average considered above. We would expect these
deviations to be small when the dimension of the Hilbert space is large.

The standard deviations in our operator ensemble are

σ2
O,RR(U, t) = E

�
|�ψU|O†

ROR|ψU�|2
�
− |E

�
|�ψU|O†

ROR|ψU�
�
|2, (25)

σ2
O,RL(U, t) = E

�
|�ψU|O†

ROL|ψU�|2
�
− |E

�
|�ψU|O†

ROL|ψU�
�
|2. (26)

The one-sided quantity (25) will obviously be independent of the unitary matrix U . It is

σ2
O,RR(U, t) = e

−2S(E)

�

i,j,k,l

e
i(Ei−Ej)t e

−i(Ek−El)t
�
E
�
M

�
jiMjiMlkM

�
lk

�
−E

�
M

�
jiMji

�
E (M�

lkMlk)
�
. (27)

The only non-trivial contribution comes from the contractionsE(M�
jiMlk)E(MjiM

�
lk). These

give

σ2
O,RR(U, t) =

e−2S(E)

γ̂2
. (28)

Note that the index contractions are such that the phases cancel, so the variation is time-
independent. The computation of (26) is very similar. In this case,

σ2
O,RL(U, t) = e

−2S(E)

�

i,j,k,l

UijU
�
kle

i(El−Ej)t U
�
i�j�Uk�l�e

−i(El�−Ej� )t
�
E
�
M

�
jlMikMj�l�M

�
i�k�

�
−E

�
M

�
jlMik

�
E
�
M

�
i�k�Mj�l�

��
.

(29)

Its non-trivial contribution comes from the same contractions as before, and the index
contraction is such that the factors of U cancel out in addition to the time dependence,
giving

σ2
O,RL(U, t) =

e−2S(E)

γ̂2
. (30)
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We can compare these standard deviations to the average size of the correlators,

σ2
O,RR

(U, t)

|E
�
|�ψU|O

†

R
OR|ψU�

�
|2

=
e2S

|trW (t)|4
,

σ2
O,RL

(U, t)

|E
�
|�ψU|O

†

R
OL|ψU�

�
|2

=
e2S

|trUW (t)|4
.

(31)

For the single sided correlators, so long as t∆ � 1 (where ∆ is the energy spread in HE)

the standard deviation is small compared to the average, as expected. For the two-sided

correlators, the answer depends on the state under consideration, i.e. the unitary matrix

U . For the standard purification U = I, the one sided and two sided correlators are the

same size. But for typical unitary matrices trU ∼ eS/2, so already for t = 0, the standard

deviation is larger than the correlator. Thus, for a typical state |ψU�, the overall size of the

correlator for a particular operator should be estimated from the standard deviation; the

typical value is thus smaller than the single-sided one by e−S
, and the value fluctuates from

operator to operator, producing a smaller average value. This also seems problematic for

attempts to interpret the correlations as due to a smooth semiclassical wormhole.

4 Operator ensemble including energy-changing transitions

In the previous section, we assumed that the operator changes the energy only by a small

amount. This restriction may be too strong for some operators, so in this section we will

provide a model for random operators when allowing for transitions between more disparate

energy states. This will be useful for considering correlations in states corresponding to the

canonical ensemble, and will allow us to model the bulk time-dependence associated with

quasinormal modes of the black hole.

When we allow transitions that change the energy, not all states are on an equal footing

and the distribution of matrix elements can change as a function of the initial and final

state energies. The operator ensemble we consider to model this behaviour should then be

more complicated. Following the philosophy of effective field theory, we write this matrix

distribution as an expansion in the energy separation of the states involved in the transition,

assuming the existence of an averaged energy E around which we work. The leading terms

in the distribution of matrices are then

Fg =
1

ZM
g

�

ij

dMijdM
∗
ij e

−γ
�
tr(MM

†)−α1tr([M,H]M†)+α2tr([H,M ][M†
,H])+...

�
, (32)

where ZM
g ensures the normalisation condition

�
Fg = 1 is satisfied. We will refer to this

as the energy-changing operator ensemble.
In the spirit of effective field theory, the parameters αi will be determined by matching

the properties of the correlators in the ensemble to those of correlators in a bulk black hole

for some particular field. We will see that the resulting values guarantee convergence of the

matrix integrals in
�
Fg. Also, a priori |i�, |j� run over all the states in the Hilbert space,

but transitions between highly separated energies are suppressed in the ensemble by α2,

and the size of the energy transitions for the values determined from the black hole will be

small compared to the overall energy in the thermodynamic limit.

Since we retain in Fg only terms quadratic in the matrix elements, we can rewrite (32)

as

Fg ∝ ΠijdMijdM
∗
ije

−γ
�

kl ∆kl|Mkl|
2
, (33)
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Perturba;on	  theory?	  

gaussian matrix models gave ensemble average two-point functions

E (MijM
�
kl) =

δikδjl
γ∆ij

, (64)

so insertions of O are pairwise contracted, giving rise to a Wick-like expansion of correlators
(after summing over the indices).

We can speculate on how this will be extended to an interacting picture. An interaction
term in the bulk, for example an n-particle vertex, means that we can tie n propagators
together. In the eikonal approximation, it means that n insertions of O (or it’s conjugate)
can be contracted. In the matrix model, we could model this by including higher order
polynomials in our ensemble distributions (10) and (32). Expanding the exponents of
these polynomials will give rise to perturbative insertions of these vertices in our correlator
ensemble averages E (Mij . . .M

�
kl), which would match with the spacetime contraction. All

of this, of course, applies to interactions close to or inside the black hole, within the part of
the bulk correlation functions that our random matrix is supposed to model.

This approach would correspond to diagonalizing the full Hamiltonian in the interacting
theory. An alternative approach would be to write a gaussian matrix ensemble based on
diagonalizing the free Hamiltonian, and write the full Hamiltonian as H = H0 + P (O,O†),
for some polynomial P in the operator O and its conjugate. The interactions would then
enter by including P perturbatively in the time evolution.

But before developing perturbation theory, we can see that even at the ”free field” level,
the random operator Wick-like scheme has peculiar features. The reason for this is that the
random matrix contraction applies to operator matrix elements rather than to the operators
themselves. Consider a four-point function of the form �ψβ |O†

RO
†
ROROR|ψβ�. In standard

bulk perturbation theory, we would contract all possible pairings of OR and O†
R. Each such

contraction would contribute equally to the full bulk correlation function, up to some time
dependence, i.e., none of them would be suppressed with the dimension of HE . We want to
show this is not the case within the perturbative expansion using random matrices.

In the random matrix formalism, the objects we compute are matrix element ensemble
averages such as

C1 = E
�
M

†
2M

†
1M2M1

�
, C2 = E

�
M

†
2M2M

†
1M1

�
, (65)

where we have put subscripts 1 and 2 on the matrices M in the order of their appearance
in the correlator; all M’s refer to matrix elements of the same operator. The C2 correlator
allows contractions M1 −M

†
1 , M2 −M

†
2 , which gives

E
�
M

∗
k1iMk1k2

�
E
�
M

∗
k3k2Mk3i

�
= δk1k1δik2δk3k3δk2i = d

3
E . (66)

and M1 −M
†
2 , M

†
1 −M2, which similarly gives

E
�
M

∗
k1iMk3i

�
E
�
M

∗
k3k2Mk1k2

�
= δk1k3δiiδk1k3δk2k2 = d

3
E . (67)

On the other hand, for the C1 correlator, while the contraction M1 −M
†
2 , M

†
1 −M2 gives

E
�
M

∗
k1iMk3i

�
E
�
M

∗
k2k1Mk2k3

�
= δk1k3δiiδk2k2δk1k3 = d

3
E (68)

with the same scaling as before, the contraction M1 −M
†
1 , M2 −M

†
2 involves

E
�
M

∗
k1iMk2k3

�
E
�
M

∗
k2k1Mk3i

�
= δk1k2δik3δk2k3δk1i = dE , (69)
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Two	  ways	  
of	  
contrac;ng	  

In	  an	  ordinary	  Wick	  contrac;on,	  there	  are	  two	  contrac;ons	  in	  
each	  protocol,	  with	  similar	  strength.	  
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In	  the	  large	  random	  matrix	  computa;on	  there	  is	  a	  planarity	  
restric;on	  

C2:	  

C1:	  
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Two	  ways	  
of	  
contrac;ng	  

One	  contrac;on	  is	  excluded	  by	  planarity.	  The	  kinema;cs	  
corresponds	  to	  the	  intersec;on	  of	  geodesics	  where	  one	  is	  
infalling	  and	  one	  is	  outgoing,	  very	  close	  to	  the	  horizon.	  



Energy	  changing	  ensemble	  

We can compare these standard deviations to the average size of the correlators,
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For the single sided correlators, so long as t∆ � 1 (where ∆ is the energy spread in HE)

the standard deviation is small compared to the average, as expected. For the two-sided

correlators, the answer depends on the state under consideration, i.e. the unitary matrix

U . For the standard purification U = I, the one sided and two sided correlators are the

same size. But for typical unitary matrices trU ∼ eS/2, so already for t = 0, the standard

deviation is larger than the correlator. Thus, for a typical state |ψU�, the overall size of the

correlator for a particular operator should be estimated from the standard deviation; the

typical value is thus smaller than the single-sided one by e−S
, and the value fluctuates from

operator to operator, producing a smaller average value. This also seems problematic for

attempts to interpret the correlations as due to a smooth semiclassical wormhole.

4 Operator ensemble including energy-changing transitions

In the previous section, we assumed that the operator changes the energy only by a small

amount. This restriction may be too strong for some operators, so in this section we will

provide a model for random operators when allowing for transitions between more disparate

energy states. This will be useful for considering correlations in states corresponding to the

canonical ensemble, and will allow us to model the bulk time-dependence associated with

quasinormal modes of the black hole.

When we allow transitions that change the energy, not all states are on an equal footing

and the distribution of matrix elements can change as a function of the initial and final

state energies. The operator ensemble we consider to model this behaviour should then be

more complicated. Following the philosophy of effective field theory, we write this matrix

distribution as an expansion in the energy separation of the states involved in the transition,

assuming the existence of an averaged energy E around which we work. The leading terms

in the distribution of matrices are then
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1

ZM
g

�
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dMijdM
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�
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, (32)

where ZM
g ensures the normalisation condition

�
Fg = 1 is satisfied. We will refer to this

as the energy-changing operator ensemble.
In the spirit of effective field theory, the parameters αi will be determined by matching

the properties of the correlators in the ensemble to those of correlators in a bulk black hole

for some particular field. We will see that the resulting values guarantee convergence of the

matrix integrals in
�
Fg. Also, a priori |i�, |j� run over all the states in the Hilbert space,

but transitions between highly separated energies are suppressed in the ensemble by α2,

and the size of the energy transitions for the values determined from the black hole will be

small compared to the overall energy in the thermodynamic limit.

Since we retain in Fg only terms quadratic in the matrix elements, we can rewrite (32)

as

Fg ∝ ΠijdMijdM
∗
ije

−γ
�

kl ∆kl|Mkl|
2
, (33)
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g ensures the normalisation condition

�
Fg = 1 is satisfied. We will refer to this

as the energy-changing operator ensemble.
In the spirit of effective field theory, the parameters αi will be determined by matching
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for some particular field. We will see that the resulting values guarantee convergence of the

matrix integrals in
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with
∆kl = 1 + α1(Ek − El) + α2(Ek − El)

2 + · · · ≡ P (αj , Ek − El), (34)

where in the last step we introduced a general polynomial of the energy difference P (Ek−El)
to emphasize that many of our statements can be extended to higher orders in Ek − El.
For the most part we will truncate the expansion to second order, but when specific details
will not matter, we will use the arbitrary polynomial P . As in subsection 3.1, the only
non-trivial connected correlation function is

E
�
M

�
ijMkl
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γ∆ij

δikδjl . (35)

Let us first discuss the scaling of γ in this ensemble. As in (12), we will require the total
“inclusive cross-section” for transitions between any states of energy Ei and Ej to be finite.
We would now like to do this while preserving the symmetry of the transition amplitude
Mij in i and j. It is then convenient to choose γ as

γ = γ̂
�
e
S(Ei) + e

S(Ej)
�
. (36)

This entails a minor modification of (32) that moves γ inside the trace13. There is some
arbitrariness in our definition of the scaling of γ, but in the effective field theory approach
that we are discussing, and when we allow transitions only between close by Ek and El,
then other choices which keep the “inclusive cross section” finite amount to redefinitions of
the αs. We will use the choice above because it is computationally simple.

The “inclusive cross section” is then
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which is finite for all |i0� and Ej . We should actually require the above expression to be
finite when we integrate over Ek, but we will see that this happens automatically because
of the tr([M,H]2) terms.

Let us now determine the coupling constants αl and understand their physical relevance
by matching observables. As said earlier, we will choose these by matching the correlators
in the ensemble to those of a particular operator. That is, we now model a given operator O
as a matrix chosen at random from the ensemble (32) with ensemble parameters αl chosen
to reproduce some of the expected structure of the operator O. Consider the one sided two
point function in the canonical ensemble,
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(38)
Note that this integral is convergent, as large Ei are cut-off by the −βEi term and for
large Ek, the numerator and denominator e

S(Ek) cancel, leaving us with terms which are
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conclusions.
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Note that this integral is convergent, as large Ei are cut-off by the −βEi term and for
large Ek, the numerator and denominator e

S(Ek) cancel, leaving us with terms which are
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Computa;ons	  are	  similar	  
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Let us now determine the coupling constants αl and understand their physical relevance
by matching observables. As said earlier, we will choose these by matching the correlators
in the ensemble to those of a particular operator. That is, we now model a given operator O
as a matrix chosen at random from the ensemble (32) with ensemble parameters αl chosen
to reproduce some of the expected structure of the operator O. Consider the one sided two
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Note that this integral is convergent, as large Ei are cut-off by the −βEi term and for
large Ek, the numerator and denominator e

S(Ek) cancel, leaving us with terms which are
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oscillating in Ek. Changing variables to Ei and the energy difference ∆ = Ek − Ei, the

integral becomes approximately

�
d∆

e−it∆

γ̂(1 + e−β∆)P (αl,∆)
. (39)

In the last formula we cancelled the Ei integral against Z(β) (picking up corrections which

scale like 1/E where E is the averaged energy, as we show in the appendix).
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For large t we deform the contour of ∆ to the upper half plane and pick up the leading

pole of the denominator. Denoting it by ∆0, Im(∆0) > 0, the correlator decays exponen-

tially at long times as

ei∆0t. (40)

In the bulk spacetime, the exponential decay of a particular correlator is determined by the

lowest quasi-normal mode of the corresponding field; i.e., ∆0 corresponds to the complex

frequency of the lowest quasi-normal mode of the bulk black hole. Thus, given a bulk

field, we choose the coefficients αl in the definition of the ensemble to reproduce the quasi

normal modes of the bulk field. In the quadratic approximation we focus on, P (αl,∆) =

1 + α1∆ + α2∆2
, and α1,2 are determined by requiring that this polynomial has a zero at

the complex frequency of the lowest quasi-normal mode. If we retained higher-order terms

in the polynomial, these could be determined by requiring further zeros match the complex

frequencies of higher quasi-normal modes.

Additionally, α1 encodes the commutator [O
†
R
,OR] since
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In the restricted operator ensemble we truncated to El = Ek and dropped the commu-

tator terms in the brackets. This can be realized as a limit of our more general operator

ensemble by rescaling α2 → ∞, α1 → 0 with an appropriate rescaling of γ̂. Thus, the

restricted operator ensemble will be a good approximation for times short compared to the

lowest quasi normal frequency of the bulk field.

4.1 Single sided correlators

Having determined the scaling behaviour of the parameters characterizing our operator

ensemble (32), we can now calculate ensemble averages of correlation functions. In this

subsection we consider the single-sided correlators, which depend only on the reduced den-

sity matrix obtained from the state.

We calculated the one-sided two-point function for the thermal density matrix in (38),

and fixed the parameters αl by requiring that it have an exponential decay in time which

14
To do so we expanded S(Ek) = S(Ei −∆E) to 1st order in ∆E. This approximation is valid since the

∆E2
term in this expansion is multiplied by a quantity which is of order 1/E but ∆E is finite and does

not scale with the total energy, so this is small. Similarly the α’s depend on the energy in which we evalute

them - ie, they hide an Ei dependence. However, taking this dependence into account introduces correction

terms proportional to ∂Eα and ∂Eβ(E). These terms again scale as 1/E and hence are negligible.
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We	  can	  expand	  in	  Ek-‐Ei	  and	  obtain,	  up	  to	  1/extensive,	  	  

At	  large	  t,	  we	  can	  localize	  to	  the	  pole	  in	  P	  (with	  the	  smallest	  
imaginary	  part)	  and	  obtain	  an	  exponen;al	  decay	  of	  the	  
correlator.	  I.e.	  	  	  Pole	  of	  P	  ó	  quasi	  normal	  modes.	  	  	  	  



Single	  and	  two	  sided	  correlator	  

Single	  sided:	  

Recall that our normalization condition is
�

i(cc
†)ii = 1. The particular cases considered

above are sharply peaked around some energy E (at least when the ensembles are stable)
so in all these cases the correlator is qualitatively the same. In particular this is true for a
pure state cij = V ∗

i Vj . This is just a consequence of the fact that we can divide our states
into very fine energy slices, and then the ensemble is invariant under arbitrary unitary
transformations in each of the slices. Thus the single-sided probes are not sensitive to any
detailed information about the state.

4.1.1 Standard deviations

To study how reliable the ensemble averages (46) are, we compute the variances of single
sided two-point correlators in our operator ensemble,

σ2
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����tr
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����

2
�
−

���E
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2
. (48)

The first term is

E
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mjM
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nkMnl� .

(49)
The only contribution to the difference (48) comes from contractions in which the op-
erators OR are contracted between traces. Thus, we are only left with the contraction
�MmiM�

nk��MmjM�
nl�. Thus the variance is

σ2
cRR =

�

i,j,m

|(c†c)ij |2
γ2

1

∆mi∆mj
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i,j

|(c†c)ij |2
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dE
eS(E)

γ2P (E − Ei)P (E − Ej)
, (50)

where we took the continuum limit in Em = E in the last step.
Plugging in the expressions for cij in the canonical, microcanonical and pure state we ob-

tain the following scaling behaviour for σ2
cRR: Canonical, Microcanonical ∼ e−2S(E), Pure

state ∼ e−S(E).

4.2 Two sided correlators

In this section we compute the two-sided correlation function in the general pure state |ψc�
defined in (43). Applying the map of operators from HR to HL discussed in section 3.3.1,
the two sided two-point function in an arbitrary pure state |ψc� is

�ψc|O†
R(t)OL(0)|ψc� =

�

i,j,k,l

cijc
�
kl e

it(El−Ej)MikM
�
jl . (51)

Thus, its operator ensemble average is

E
�
�ψc|O†

R(t)OL(0)|ψc�
�
=

�

i,k

ciic
∗
kk

ei(Ek−Ei)t

γ∆ik
. (52)

This should be compared with the single sided correlator for the same |ψc�, in equation
(46).

For the special cases corresponding to the canonical and microcanonical ensemble where
cij ∝ δij , we can see that the correlators have the same form as the single-sided one. For the
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unitary transformed state with cij = Uije−βEj/2, where U is an arbitrary unitary matrix, as
in the restricted operator ensemble, the two sided correlator will depend on U . We define
the ”coherence density” as

F (E) = e−S(E)
�

i∈H
Uii, (53)

then the two sided correlator is

E
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�ψc|O

†
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eS(Ei) + eS(Ek)

ei(Ek−Ei)t

γ̂∆ik(Ei, Ek)
(54)

For Uij = δij , F is of order one, and this two-sided correlator is similar to the one-sided cor-
relator. For generic Uij , F is exponentially suppressed, and as in our previous discussion in
the microcanonical operator ensemble, the two-sided correlator is exponentially suppressed
relative to the single-sided correlator, so we conclude that the states do not have a smooth
wormhole description in the dual.

Again, it would be interesting to compare cases where F (E) is order one to the discussion
of semi-classical throats of greater length in [9]. For the canonical ensemble, we could take
cij = e−βEi/4−βEj/4Vij where V is close to the identity, and mixes only states very close in
energy, say less than δ. In this case F (E) = e−S(E)+O(βδ)�

i∈HE
Vii = 1 +O(βδ).

4.2.1 Standard deviations

To study how reliable the ensemble averages (52) are, we compute the standard deviations
of two sided two-point correlators in our operator ensemble,
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cRL = E
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†
R(t)OL(0)|ψc�

���
2
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−
���E

�
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†
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����
2
. (55)

The calculation proceeds as in section 4.1.1. In particular, the origin of the contractions
giving rise to a non-trivial contribution is entirely the same. The variance equals

σ2
cRL =

�

i,j,k,l

|cij |2|ckl|2

γ2
1

∆ik∆jl
. (56)

For the cij corresponding to both the standard ensemble states and their generalized ver-
sions with a unitary matrix, this scales as e−2S , as in the discussion in the restricted operator
ensemble. For the standard microcanonical and canonical states this then implies the stan-
dard deviation is small compared to the average value, while for the general states involving
Uij , it is of the same order as the average value.

Thus the results for two-sided correlators in this more general energy-changing operator
ensemble are qualitatively the same as in the simpler restricted ensemble.

4.3 Relation to the eigenvalue thermalization hypothesis

We have introduced these random matrix ensembles as a way to model the behaviour of
operator correlation functions in a complicated thermal system (namely the black hole
states). We would like to compare this to a previous description of such correlators, the
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This is consistent with the small α expansion being considered in this calculation.
Suppose we concatenate two shocks, i.e., we evaluate

Vα1α2 = |tr
�
e
iα1H1e

iα2H2
�
|2 (9)

where H1 and H2 are drawn independently from the ensemble of hermitian random matrices
and α1 and α2 are the parameters of the two shocks. We show that

Vα1α2 =
1

N2 − 1
(Vα1Vα2 +N

2)− 1

N2 − 1
(Vα1 + Vα2) (10)

If we then go to the scaling where V̂αi is held fixed in the large N limit, we get

V̂α1α2 = V̂α1 V̂α2 (11)

which is the correct equation for the concatenation of shock throats in Shenker & Stanford.
To show (10), consider averaging over H2 keeping H1 fixed

EH2

�
|tr(eiα1H1e

iα2H2)|2
�

(12)

Since both the H1 and H2 ensemble measures are invariant under U(N) conjugation, we
can insert an additional integral over the unitary matrices by conjugating the second matrix

�
dUtr(AUBU

†)tr(UB
†
U

†
A

†), A = e
iα1H1 , B = e

iα2H2 (13)

Using the identity (128), we get

1
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tr(A)tr(A†)tr(B)tr(B†) + tr(AA†)tr(BB

†)
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− 1

N(N2 − 1)

�
tr(A)tr(A†)tr(BB

†) + tr(AA†)tr(B)tr(B†)
� (14)

If we now compute the ensemble average EH1EH2 , one reproduces (10). In the large N
limit, we obtain

Vα1α2 =
1

N2
(Vα1Vα2 +N

2)− 1

N2
(Vα1 + Vα2) . (15)

Using the assumed scaling for V̂αi , we reproduce the concatenation property for two shocks

V̂α1α2 = V̂α1 V̂α2 (16)

Two further comments :

• This large N concatenation property can be extended to an arbitrary number of shocks.
This is because (13) is true for any pair of matrices A and B. In particular, we could
take B = e

iαnH and A =
�

n−1
j=1 e

iαjH . Then, the ensemble average of (14) would give
rise to

Vα1...αn =
1

N2 − 1
(Vα1...αn−1Vαn +N

2)− 1

N2 − 1

�
Vα1...αn−1 + Vαn

�
(17)

This is a recursion relation that we could solve, but in the large N limit, we clearly
recover the multiple shock concatenation result

V̂α1...αn = V̂α1 . . . V̂αn . (18)

• The recursion relation (17) does not depend on the explicit details of the ensemble
under consideration, but only requires its invariance under U(N). Thus, the final
concatenation result will apply to all ensembles where the N

2 scaling holds.
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