Entanglement Entropy in Nonlocal Theories

Charles Rabideau

Based on work with Joanna Karczmarek 1307.3517 and work in progress

Department of Physics and Astronomy, University of British Columbia

Volume Laws

Local field theories exhibit area laws:

$$S_A \propto |\partial A| \epsilon^{-(d-1)}$$

Volume Laws

Local field theories exhibit area laws:

$$S_A \propto |\partial A| \epsilon^{-(d-1)}$$

Expect nonlocal theories to obey a "volume law":

$$S_A \propto |A| \epsilon^{-d}$$

BF 0803.1928

Volume Laws

Local field theories exhibit area laws:

$$S_A \propto |\partial A| \epsilon^{-(d-1)}$$

Expect nonlocal theories to obey a "volume law":

$$S_A \propto |A| \epsilon^{-d}$$

BF 0803.1928

- Motivations:
 - Violations of area law
 - Interest in noncommutative theories
 - Scrambling

Theories Considered

hep-th/9907166 hep-th/9908134 hep-th/0103090

 Field theories defined by replacing multiplications with a noncommutative product.

Theories Considered

hep-th/9907166 hep-th/9908134 hep-th/0103090

- Field theories defined by replacing multiplications with a noncommutative product.
- Noncommutative field theory:

$$[x,y]_{\star} = i\theta$$

$$(f \star g)(x,y) = \left[e^{\frac{i}{2}\theta \left(\frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \zeta_2} - \frac{\partial}{\partial \zeta_1} \frac{\partial}{\partial \xi_2} \right)} f(x + \xi_1, y + \zeta_1) g(x + \xi_2, y + \zeta_2) \right]_{\xi_1 = \zeta_1 = \xi_2 = \zeta_2 = 0}$$

• Dipole length θp .

Theories Considered

- Field theories defined by replacing multiplications with a noncommutative product.
- Noncommutative field theory:

$$[x,y]_{\star} = i\theta$$

$$(f \star g)(x,y) = \left[e^{\frac{i}{2}\theta \left(\frac{\partial}{\partial \xi_1} \frac{\partial}{\partial \zeta_2} - \frac{\partial}{\partial \zeta_1} \frac{\partial}{\partial \xi_2} \right)} f(x + \xi_1, y + \zeta_1) g(x + \xi_2, y + \zeta_2) \right]_{\xi_1 = \zeta_1 = \xi_2 = \zeta_2 = 0}$$

- Dipole length θp .
- Dipole Theory:

$$(f \tilde{\star} g)(\vec{x}) = f\left(\vec{x} - \frac{\vec{L}_g}{2}\right) g\left(\vec{x} + \frac{\vec{L}_f}{2}\right)$$

• Fixed dipole length L.

Features of the Gravity Duals

Non trivial geometry of the compact dimensions and dilaton

$$S = \frac{1}{32\pi^6 \alpha'^4} \int d^8 \sigma e^{-2\phi} \sqrt{G_{ind}^{(8)}}$$

Features of the Gravity Duals

Non trivial geometry of the compact dimensions and dilaton

$$S = \frac{1}{32\pi^6 \alpha'^4} \int d^8 \sigma e^{-2\phi} \sqrt{G_{ind}^{(8)}}$$

Non zero NS B-field

⇒ Open and closed string metric

Features of the Gravity Duals

Non trivial geometry of the compact dimensions and dilaton

$$S = \frac{1}{32\pi^6 \alpha'^4} \int d^8 \sigma e^{-2\phi} \sqrt{G_{ind}^{(8)}}$$

Non zero NS B-field

⇒ Open and closed string metric

Causality is determined by closed string metric

$$\frac{ds^2}{R^2} = u^2 \left(-dt^2 + dz^2 + f(u) \left[dx^2 + dy^2 \right] \right) + \frac{du^2}{u^2} + \dots$$

$$f^{-1}(u) = 1 + (a_{\theta}u)^4 \qquad a_{\theta} = \lambda^{\frac{1}{4}} \theta^{\frac{1}{2}}$$

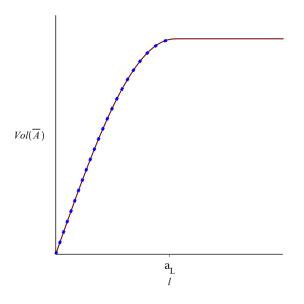
$$f^{-1}(u) = 1 + (a_L u)^2 \qquad a_L = \lambda^{\frac{1}{2}} L$$

Entanglement Entropy of a Strip

Dipole:

$$S_A \xrightarrow[l \to \infty]{l \to 0} \frac{N^2}{2\pi} |A| \epsilon^{-3}$$

$$\xrightarrow[l \to \infty]{l \to \infty} \frac{N^2}{3\pi} |a_L| \partial A |\epsilon^{-3}|$$

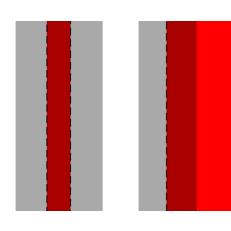


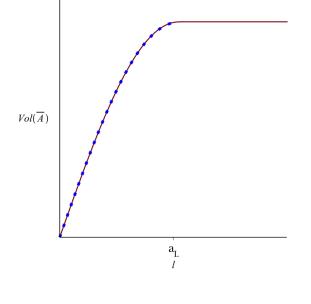
Entanglement Entropy of a Strip

• Dipole:

$$S_A \xrightarrow[l \to \infty]{l \to 0} \frac{N^2}{2\pi} |A| \epsilon^{-3}$$

$$\xrightarrow[l \to \infty]{l \to \infty} \frac{N^2}{3\pi} |a_L| \partial A |\epsilon^{-3}|$$



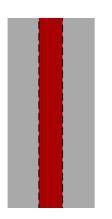


Entanglement Entropy of a Strip

• Dipole:

$$S_A \xrightarrow[l \to \infty]{l \to 0} \frac{N^2}{2\pi} |A| \epsilon^{-3}$$

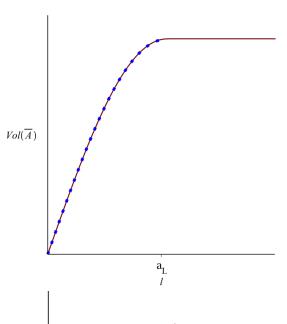
$$\xrightarrow[l \to \infty]{l \to \infty} \frac{N^2}{3\pi} |a_L| \partial A |\epsilon^{-3}|$$

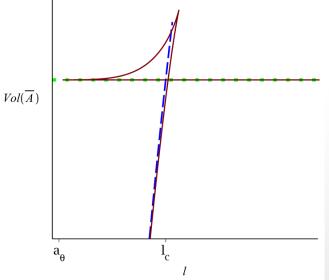




Noncommutative

- First order at $l_c = \frac{1}{2}a_{\theta}^2/\epsilon$.
- $S_A = \frac{N^2}{2\pi} \frac{|A|}{\epsilon^3}$ for all l as $\epsilon \to 0$.





$$S = \int \left[\partial \phi \star \partial \phi + \lambda \phi \star \phi \star \phi \star \phi \right]$$

• A = half plane

$$S = \int \left[\partial \phi \star \partial \phi + \lambda \phi \star \phi \star \phi \star \phi \right]$$

- A = half plane
- Does intuitive picture extent to this case? $S_A \propto \frac{l_c |\partial A|}{\epsilon^d}$?

$$S = \int \left[\partial \phi \star \partial \phi + \lambda \phi \star \phi \star \phi \star \phi \right]$$

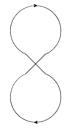
- A = half plane
- Does intuitive picture extent to this case? $S_A \propto \frac{l_c |\partial A|}{\epsilon^d}$?
- No! Leading divergence is same order as local theory

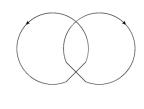
$$S = \int \left[\partial \phi \star \partial \phi + \lambda \phi \star \phi \star \phi \star \phi \right]$$

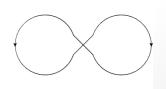
- A = half plane
- Does intuitive picture extent to this case? $S_A \propto \frac{l_c |\partial A|}{\epsilon^d}$?
- No! Leading divergence is same order as local theory
- Known story:

$$S = \int \left[\partial \phi \star \partial \phi + \lambda \phi \star \phi \star \phi \star \phi \right]$$

- A = half plane
- Does intuitive picture extent to this case? $S_A \propto \frac{l_c |\partial A|}{\epsilon^d}$?
- No! Leading divergence is same order as local theory
- Known story:
 - Only non-planar diagram gives new contribution
 - No higher order UV divergences
 - This story can be extended to gauge fields







The End

 Noncommutative field theory exhibits a volume law in strong coupling, large N limit.

 Intuitive picture for understanding the volume law.

Gravity Duals

Noncommutative field theory:

$$\frac{ds^{2}}{R^{2}} = u^{2} \left(-dt^{2} + dz^{2} + f(u) \left[dx^{2} + dy^{2} \right] \right) + \frac{du^{2}}{u^{2}} + d\Omega_{5}^{2}$$

$$e^{2\phi} = g_{s}^{2} f(u) \qquad B_{xy} = \frac{1}{\theta} \left(1 - f(u) \right)$$

$$f(u) = \frac{1}{1 + (a_{\theta}u)^{4}}$$

Dipole Theory:

$$\frac{ds^{2}}{R^{2}} = u^{2} \left(-dt^{2} + dy^{2} + dz^{2} + f(u)dx^{2} \right) + \frac{du^{2}}{u^{2}} + f(u)d\psi^{2} + V_{\mathbb{C}\mathbf{P}^{2}}$$

$$e^{2\phi} = g_{s}^{2} f(u) \qquad B_{x\psi} = -\frac{1}{L} \left(1 - f(u) \right)$$

$$f(u) = \frac{1}{1 + (\lambda Lu)^{2}}, \qquad \int V_{\mathbb{C}\mathbf{P}^{2}} = \frac{\pi^{2}}{2}.$$