Quantum Information in Quantum Gravity @ UBC

Quantum Entanglement of Local Operators

Masahiro Nozaki

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

1. Based on arXiv:1401.0539v1 [hep-th] (Phys. Rev. Lett. 112, 111602 (2014)) with Tokiro Numasawa, Tadashi Takayanagi

2. Based on arXiv:1405.5875 [hep-th]

Motivation

2. A state is defined by acting a local operator on the ground state:

$$|\Psi\rangle = \mathcal{N}^{-1}\mathcal{O}(t = -t, x_1 = -l, \mathbf{x}) |0\rangle.$$

Motivation

We study the property of

Renyi Entanglement Entropy

Motivation

We study the property of

Renyi Entanglement Entropy

The definition of $\Delta S_A^{(n)}$

 $\Delta S_A^{(n)}$ is defined by the excess of REE:

$$\Delta S_A^{(n)} = S_A^{(n)Ex} - S_A^{(n)G},$$

where

• REE for
$$|\Psi\rangle = \mathcal{N}^{-1}\mathcal{O}(t, x^1) |0\rangle$$
:
 $S_A^{(n)Ex} \sim \frac{1}{1-n} \log \left[\frac{\int D\Phi \mathcal{O}^{\dagger}(r_1, \theta_{1,1})\mathcal{O}(r_2, \theta_{2,1})\cdots \mathcal{O}^{\dagger}(r_1, \theta_{1,n})\mathcal{O}(r_2, \theta_{2,n})}{(\int D\Phi \mathcal{O}^{\dagger}(r_1, \theta_{1,1})\mathcal{O}(r_2, \theta_{2,1}))^n} \right]$

• REE for Ground State:

$$S_A^{(n)} \sim \frac{1}{1-n} \log\left[\frac{Z_n}{Z_1^n}\right]$$

Example

We consider *free massless scalar* field theory in *d+1 dim*. Especially, we focus on that in *4 dim*.

We act a local operator $\phi(-t, -l, \mathbf{x})$ on the ground state: $|\Psi\rangle = \mathcal{N}^{-1}\phi(-t, -l, \mathbf{x}) |0\rangle$ Subsystem A : $x^1 \ge 0$ $x_1 = -|$ We measure the second (Renyi) entanglement entropies $\Delta S^{(2)}_{A}$ at t=0. **X**₁ *Time evolution!!*

We can interpret this behavior in terms of *the relativistic propagation of an entangled pair*.

 $\Delta S_A^{(2)}$ for $|\Psi\rangle = \mathcal{N}^{-1}\phi(-t, -l, \mathbf{x}) |0\rangle$ approaches *constants! !* (log2) We call them *the (Renyi) entanglement entropies of operators.*

 $\Delta S_A^{(2)}$ for $|\Psi\rangle = \mathcal{N}^{-1}\phi(-t, -l, \mathbf{x}) |0\rangle$ approaches *constants! !* (log2) We call them *the (Renyi) entanglement entropies of operators.*

Generalize Results

We defined *the (Renyi) entanglement entropies of operators* by the late time values of $\Delta S_A^{(n)}$.

The (Renyi) entanglement entropies of specific operators (: $(\partial^m \phi)^k$:) which are composed of single species operator are given by

$$\Delta S_A^{(n)f} = \frac{1}{1-n} \log \left(\frac{1}{2^{nk}} \sum_{j=0}^k ({}_kC_j)^n \right).$$
$$\Delta S_A = k \cdot \log 2 - \frac{1}{2^k} \sum_{j=0}^k {}_kC_j \log {}_kC_j.$$

for any dimension.

They characterize the local operators from the viewpoint of quantum entanglement!!

Sum rule

We acts various local operators on the ground state.

They are given by the sum of the REE for the state defined by acting each operators $\mathcal{O}^i(t^1, x^{1,i})$ on the ground state.

Summary

- We defined the (Renyi) entanglement entropies of local operators.
 - -They characterize local operators from the viewpoint of quantum entanglement.
- These entropies of the operators (constructed of singlespecies operator) is given by the those of binomial distribution.
 - -The results we obtain in terms of entangled pair agree with the results we obtain by replica method.
- They obey the sum rule.

Future Problems

- The formula for the operators constructed of multi-species operators: $(\partial_r^m \phi)^k \phi^l$: (generally depend on the spacetime dimension).
- The (Renyi) entanglement entropies of operators in the interacting field theory . (also massive and finite temp.)

• The (Renyi) entanglement entropies for the excited state defined by acting non-local operators.