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Here ⇢A is the reduced density matrix associated with a CFT region A, CA is the intersection

of the past and future horizons of D[A], D[A] is the boundary domain of dependence of A,

and � is the causal holographic information (CHI) of [20] defined above in (2) (see Fig. 1).1

Since (1) is a first variation of (2) for a class of special states, our proof of (1) provides new

evidence for the conjecture S(1) = �.

The organization of the rest of the paper is as follows. In section 2 we review the definition

of S(1) and briefly state some of the motivation for (2). In section 3 we prove our main result

�S(1) = �SW and provide examples of states that satisfy the assumptions of our proof. In

section 4 we summarize our results and comment on their relationship to the related work

of [24–27]. In Appendix A we outline a strategy for testing (2) non-perturbatively.

2. THE ONE POINT ENTROPY S(1)

In this section we briefly define and motivate the one-point entropy S(1), we refer the

reader to [13] for additional details. The one-point entropy is defined as

S(1)(⇢A) = lub
⌧A2TA

S(⌧A), (3)

where ⇢A is the reduced density matrix associated with a spacelike region A of the CFT,

S(⌧A) := � Tr[⌧A log(⌧A)] is the von Neumann entropy, and ‘lub’ stands for the least upper

bound, in this case over the states TA. Here, TA is the set of all states ⌧A which satisfy

Tr[O(x)⌧A] = Tr[O(x)⇢A], x 2 D[A], (4)

for all local, gauge invariant CFT operators O(x). In words, S(1)(⇢A) is the least upper

bound of the von Neumann entropy of all state ⌧A which reproduce the one-point functions

of all local operators in the domain of dependence D[A].2

Heuristically, we might imagine an experimental physicist performing all local measure-

ments in D[A] and trying to estimate the state ⇢A based only on this data. Having no

other information at her disposal, this experimentalist would be justified in assigning equal

1 The proposal as stated applies only to Einstein-Hilbert gravity, but there is a natural generalization to

higher derivative theories of gravity by replacing the Area functional with the entropy functional of [21–

23]. In this note we will only be interested in cases for which this entropy functional reduces to the Wald

entropy.
2 See [28] for a non-holographic application of this type of coarse-graining.
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construction the interior of ⌥G is identical to the exterior of the AdS-Schwarzschild black

hole, therefore the CFT state ⇢G satisfies assumptions (I) and (II). Furthermore, by the usual

AdS/CFT dictionary the one-point functions of ⇢G are identical to the one point functions

of ⇢L, the density matrix of the left boundary of AdS-Schwarzschild.6 So the state ⇢G also

satisfies assumption (III).

It only remains to show that ⇢G 6= ⇢L. This is most easily seen by calculating the entropy

of both states. The entropy of ⇢L is given by S(⇢L) = SW ⇠ N2. The geon geometry, on

the other hand, has vanishing Ryu-Takayanagi entropy, which implies that the entropy ⇢G

is parametrically smaller than N2. Other arguments, given in [44] and explained in detail

in [46] (see also [47]) indicate that ⇢G can be chosen to be a pure state.7 Therefore, by the

corollary proved in section 3, ⇢G is a state for which

�SW = �S(1) 6= �S. (18)

As mentioned in the introduction, another state satisfying assumptions (I)-(III) is the B-

state constructed in [16] and studied holographically in [15]. This state is a pure CFT state

meant to model a global quench, in which the Hamiltonian of the theory is changed abruptly.

Hartman and Maldacena [15] argued that bulk geometry of the B-state can be obtained by

slicing the maximally extended AdS-Schwarzschild geometry in half and terminating the

spacetime in an end of the world brane. They then used the Ryu-Takayanagi proposal to

reproduce the time evolution of the entanglement entropy calculated in the field theory by

Calabrese and Cardy [16].

It follows immediately from the construction described above that the B-state spacetime

has a conformal diagram like Fig. 2(b) and satisfies (I)-(III) by the same arguments as in

the geon case. Since the B-state is pure, (18) also follows just as for the geon states.

As our last example we consider the firewall [18] and fuzzball (see [17]) proposals. Both

proposals predict that black hole states are ensembles of pure states each of which matches

the classical geometry from asymptotic infinity up to a few Planck lengths from the horizon,

and beyond this stretched horizon the semiclassical description fails. These microstates,

some of which have been constructed explicitly (see [48] for a review) provide another ex-

ample of pure states which satisfy (I)-(III).

6 Modulo an issue related to choice of conformal frame, which is non-trivial in the presence of a conformal

anomaly (see [46]). However, this anomaly term only modifies Hth by a constant c as in (9), which we

have already accounted for. Thanks to Kostas Skenderis for pointing this out to me.
7 Up to this point we had not completely specified ⇢G .
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We now wish to compute

�S(1) = �S(1)(⇢A + �⇢) � S(1)(⇢A) + O(�⇢2). (12)

It turns out to be useful to consider the family of states ⇢A + ↵ �⇢, where ↵ is an arbitrary

constant. Recall from section 2 that S(1) is calculated by maximizing the entropy over states

which satisfy a constraint of the form (4). By assumption (III), ⇢A+↵ �⇢ must have identical

one-point functions to ⇢th + ↵ �⇢, therefore

S(1)(⇢A + ↵ �⇢) = S(1)(⇢th + ↵ �⇢) � S(⇢th + ↵ �⇢), (13)

where the last inequality follows from the definition (3).

Also by assumption (III) we have S(1)(⇢th) = S(⇢th) because ⇢th has a local modular

Hamiltonian (by the argument given just below (5)). Inserting this relation into (13) and

using (6) gives

↵
�
�S(1) � Tr[�⇢ Hth]

�
+ O(↵2) � 0, (14)

This inequality must hold for arbitrary ↵, therefore the term in parenthesis vanishes,5 and

�S(1) = � hHthi . (15)

Comparing (10) and (15) we see that the proof is complete. We now prove a corollary which

will be used below.

Corollary: Under the same assumptions as above, �SW = �S(⇢A) if and only if

⇢A = ⇢th for ⇢th as defined in (7).

If ⇢A = ⇢th then it follows immediately from (6) and (10) that

�S = � hHthi = �SW . (16)

Conversely, say that �SW = �S for all �⇢. It then also follows from (6) and (10) that

Tr[�⇢ Hth] = Tr[�⇢ HA], (17)

where HA is the modular Hamiltonian of ⇢A. But (17) can only hold for arbitrary �⇢ if

HA = Hth, which implies that ⇢A = ⇢th. This completes our proof of the corollary.

5 Thanks to Aron Wall for pointing out that my original argument could be considerably simplified.
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1. INTRODUCTION

The Wald-Iyer theorem [1] establishes that the first law of black hole thermodynamics [2]

is a general consequence of di↵eomorphism invariance. In the context of AdS/CFT, it has

been shown by Faulkner et al. [3] that a special case of the Wald-Iyer theorem has a precise

microscopic interpretation as the ‘first law of entanglement entropy’ [4]. This insight turned

out to be very powerful, as it led to a derivation of the linearized Einstein equation [3]

from the Ryu-Takayanagi formula [5] (see also [6–10]). Subsequent work extended this

derivation to include universal coupling to matter [11] (with an additional assumption argued

for in [12]).

Given this recent success, it seems both interesting and important to answer the question

‘What is the holographic dual of the Wald-Iyer theorem?’. In light of the previous paragraph

one might naively guess that the Wald-Iyer theorem is the bulk dual of the first law of

entanglement entropy, however, as we will show below, this guess is incorrect. Instead we

will argue that the Wald-Iyer theorem is dual to a coarse-grained first law. More precisely,

we will prove that for a certain class of states defined in section 3

�SW = �S(1). (1)

Here SW is the Wald entropy, S(1) is the one-point entropy of [13], and � is a variation which

acts infinitesimally on both the bulk spacetime and the boundary density matrix. The one-

point entropy (which we define in section 2) is a coarse-grained measure of information that

is only sensitive to the expectation value of local operators (i.e. one-point functions) within

a boundary causal domain of dependence. Our main result is that (1) holds even for pure

states, for which the Wald entropy is not a measure of entanglement of the associated CFT

state.

For many states, including the AdS-Rindler state considered in [3], (1) does reduce to

the first law of entanglement entropy �SW = �S, where S is the von Neumann entropy.

Still, there are two reasons why our interpretation of the Wald entropy as a coarse-grained

entropy is useful.

First, there are other states for which �SW 6= �S but (1) continues to hold. Examples of

such states are

• topological-geon/single-exterior black holes [14]

3
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1

FIG. 1. A sketch of a boundary region A, its associated domain of dependence D[A], the causal

information surface CA and the RT/HRT surface EA. D[A] lies on the AdS boundary while CA

and EA extend into the bulk spacetime. The wedge shaped region enclosed by D[A] along with

the bulk past and future horizons of D[A] (gray lines) is called the causal wedge of A and denoted

⌥A.

• the “B-states” of [15], which model a CFT excited state after a global quench (see [16])

• black hole microstates of either the fuzzy (see e.g. [17]) or fiery [18] persuasion

• the late time limit of a collapsed black hole.

What these states have in common is that, even though they are dual to pure (or nearly

pure) CFT states, they each have a bulk region which resembles a black hole, including

obeying a thermodynamic first law. This latter behavior is captured by (1).

Second, a corollary of our result and [3] is that the linearized gravitational equations of

motion can also be derived from (1). This observation suggests that it might be possible to

derive gravitational equations of motion from a coarse graining of the microscopic degrees

of freedom, in the spirit of [19]. This proposal could be tested by deriving the linearized

equations using states for which S(1) 6= S or by checking to see if (1) continues to hold

beyond linear order.

Equation (1) also has implications for the proposal of [13]. In [13] it was conjectured

that, in the Einstein gravity limit, the one-point entropy could be computed from the ‘Ryu-

Takayanagi’-like formula

S(1)(⇢A) =
Area[CA]

4G
=: �A. (2)
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Maldacena (2003)�A :=
Area[CA]

4G

AdS-Schwarzschild

RPn geon


