Problem Set 8

Problem 1

Hand in the other part of the homework on Monday.

Problem 2

Consider the action

$$
S=\int \frac{1}{2} \partial_{\mu} \bar{\psi} \partial^{\mu} \psi-\frac{1}{2} m^{2} \bar{\psi} \psi
$$

where ψ is considered to be a complex field. Show that the action can be written as a sum of independent quadratic actions for eight real fields (hint: a good start is to write out the action explicitly in terms of the real and imaginary parts of each component of ψ), and explain why such an action is physically unacceptable.

Problem 3

a) Show that if $u(0)$ satisfies $\left(m \gamma^{0}-m\right) u(0)=0$ that $u(\vec{p})=M\left(\Lambda_{\vec{p}}\right) u(0)$ satisfies

$$
\left(p_{\mu} \gamma^{\mu}-m\right) u(\vec{p})=0
$$

where $\Lambda_{\vec{p}}$ is the boost up to momentum p.
Note: the fact that $\bar{\psi} \psi$ transforms like a scalar implies that

$$
M^{\dagger}(\Lambda) \gamma^{0}=\gamma^{0} M^{-1}(\Lambda)
$$

This, and the fact that $\bar{\psi} \gamma^{\mu} \psi$ transforms like a vector implies that

$$
M^{-1}(\Lambda) \gamma^{\mu} M(\Lambda)=\Lambda_{\nu}^{\mu} \gamma^{\nu}
$$

b) Let $\xi_{r}, r=1,2$ be orthonormal two component vectors, and let

$$
u_{r}(\vec{p})=M\left(\Lambda_{\vec{p}}\right) \sqrt{m}\binom{\xi_{r}}{\xi_{r}}
$$

Show that

$$
\sum_{s} u_{s}(\vec{p}) \bar{u}_{s}(\vec{p})=\gamma^{\mu} p_{\mu}+m
$$

Note, you do not need to write out $M\left(\Lambda_{\vec{p}}\right)$ explicitly.

