Transition amplitudes

Consider a quantum field theory with Hamiltonian $H = H_0 + H_I$ where H_0 represents the part quadratic in the fields. The interacting part of the Hamiltonian can lead to transitions which change the number and/or properties of the particles in our state. Here, we would like to derive a convenient formula for the probability amplitudes associated with such transitions.

Even though our theory is interacting, it will still be convenient to use a basis of states inherited from the free Hamiltonian. We'll imagine that we have some eigenstate of the free Hamiltonian H_0 at time $t = t_0$. Then we evolve forward in time and ask for the probability amplitude that at time t we will find some other basis element if we measure the system. More general transition amplitudes can be expressed in terms of these ones involving the basis elements.

Q: To start, write down a basis of energy eigenstates for the free Hamiltonian H_0 .

Assume that the states in the previous question are defined at t = 0. It will be convenient below to use a basis for the states at other times which is just the previous basis evolved forward to the new time t using the free Hamiltonian H_0 .

Q: If $|\Psi(t=0)\rangle$ is one of the basis elements from the previous question, write a formula for the corresponding basis element $|\Psi(t)\rangle$ at time t. Don't use your answer to the previous question for this or the other questions, just write a give an answer that is true in general.

Q: Now, suppose we have a general state $|\Psi_0\rangle$ at $t = t_0$. What is the probability amplitude that if we measure the system at time t, we will find state $|\Psi_1\rangle$ (assuming that this state is an eigenstate corresponding to the possible result of a measurement)?

Using your answers from the previous questions, the transition amplitude from a basis element $|\Psi_1(t_0)\rangle$ at time t_0 to the basis state $|\Psi_2(t)\rangle$ at time t can be written as

 $\langle \Psi_2(0) | U(t,t_0) | \Psi_1(0) \rangle$.

Q: Write a formula for $U(t, t_0)$ in terms of the Hamiltonians H_I and H_0 and the times t and t_0 .

We now want to write $U(t, t_0)$ in a more useful form. Let's define the time-dependent operator $H_I(t)$ by

$$H_I(t) = e^{iH_0t}H_Ie^{-iH_0t}$$

From the definition, we can see that $H_I(t)$ is obtained from H_I simply by replacing the fields $\phi(x)$ with the time-dependent fields $\phi(x,t)$ we have defined before. To go further, let's see what U looks like for infinitesimal times.

Q: For $t = t_0 + dt$, write a formula for $U(t, t_0)$, expanded to order dt. Express the result in terms of the time-dependent H_I .

Q: Reexpress this in terms of an exponential that agrees with your previous result up to order dt^2 .

Now, the evolution over a finite time can be obtained by breaking up the time interval into many parts of size dt, and writing

$$U(t,t_0) = \lim_{dt \to 0} U(t,t-dt)U(t-dt,t-2dt) \cdots U(t0+dt,t0)$$
(1)

Q: Rewrite the right-hand-side of this equation using your exponential expression for U(t + dt, t).

The above expression defines what is known as the time-ordered exponential:

$$U(t,t_0) = T\left\{e^{-i\int_{t_0}^t H_I(t)dt}\right\}$$
.

In practice, it is much more convenient to have an expression for this expanded order by order in H_I . To obtain this (and to see why the time-ordered exponential is written in this way) start again with (1), but now write it out in terms of the infinitesimal expression $U = 1 + \ldots$ you derived above and write down all terms in (1) that are linear in H_I . Express the complete set of these in terms of an integral. Q: Now, in the same way, write down the terms in (1) that are quadratic in H_I . Try to express this set of terms in terms of a double integral. *Hint:* be careful about the limits on your integrals, and keep in mind that $H_I(t_1)$ and $H_I(t_2)$ do not commute with each other.

Q: Can you figure out an expression for the terms in (1) that are of order n in H_I ?