Physics 402 worksheet

Please work in groups of ~ 3 people, but write on your own worksheet since this will be part of your homework.

Particles in the state $|Z=1\rangle$ are produced and travel through an electromagnetic field such that their state evolves via a Hamiltonian which is represented in the basis of Z eigenstates as

$$
\hat{H}=E_{0}\left(\begin{array}{ll}
3 & 1 \tag{1}\\
1 & 3
\end{array}\right)
$$

After traveling through the electromagnetic field for a time T, the particle enters a Z detector. What is the probability that the particle will be measured in the state $Z=1$?

Hint: you have seen this matrix before.

Homework Problem

The internal states of a particle of spin 1 are described by a three-dimensional Hilbert space. We can choose a basis of eigenstates of and operator S_{z} with eigenvalues (in units of \hbar) -1 , 0 , and 1. Suppose the Hamiltonian for this system (perhaps coming from the interaction of this spin with a magnetic field) is represented in this basis by

$$
H=E_{0}\left(\begin{array}{ccc}
9 & 0 & 0 \tag{2}\\
0 & 10 & -4 i \\
0 & 4 i & 4
\end{array}\right)
$$

where $E_{0}=10^{7} s^{-1} \cdot \hbar$. So for example, $\hat{H}|-1\rangle=9 E_{0}|-1\rangle$. If the state at $t=0$ is $\frac{1}{\sqrt{2}}(|-1\rangle+|1\rangle)$ what is the probability that the $\operatorname{spin} S_{z}$ will be measured to be 0 at some later time $T=10^{-8} s$?

