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Physics 402 Exam, April 16, 2018

Multiple Choice Questions: Please write your answers in the spaces on page 4

1) A spin half particle is in an eigenstate of Sx with eigenvalue ~/2. If we measure the z

component of spin for this particle,

a) we will definitely find Sz = 0.

b) we might find any value between Sz = −~/2 and Sz = ~/2
c) We will find either Sz = −~/2 or Sz = ~/2

2) A quantum system is in an eigenstate of an observable O with eigenvalue λ at some time

t = 0. If we measure this observable at a later time t = T ,

a) We will always find λ.

b) We will not always find λ.

3) Suppose that |Ψ1〉 is some state of a particular molecule. If Jz is the operator associated

with the z component of angular momentum, which of the following states states is the result

of rotating the state |Ψ1〉 about the z axis by angle π/2?

a) π
2~Jz|Ψ1〉

b) |Ψ1〉 − i π2~Jz|Ψ1〉
c) e−i

π
2~Jz |Ψ1〉

d) |Ψ1〉+ e−i
π
2~Jz |Ψ1〉

4) If Hermitian operators Â and B̂ commute with each other, one consequence is that

a) The observables A and B are conserved.

b) There is some basis of the Hilbert space for which the basis elements are eigenstates of

both A and B
c) It’s possible to find a basis of energy eigenstates that have definite values for A and B.

d) All states have definite values for A and B.

5) If [Ô,H] = 0, where H is the Hamiltonian and Ô is some Hermitian operator, which of

the following is generally true?

a) If |E〉 is an energy eigenstate, then Ô|E〉 is an energy eigenstate with the same energy.

b) If |E〉 is an energy eigenstate, then Ô|E〉 is an energy eigenstate which may have the same

energy or some other energy.

c) If |E〉 is an energy eigenstate, then all other energy eigenstates may be obtained by acting

on this state with Ô multiple times.



6) Which of the following (un-normalized) position space wavefunctions represents an eigen-

state of the momentum operator for a particle in one dimension?

a) ψ(x) = eikx

b) ψ(x) = cos(kx)

c) ψ(x) = δ(x− y)

d) Both a) and b)

7) If a Hamiltonian H0 has two degenerate states |A〉 and |B〉 and we add a perturbation

H1 to the system such that 〈A|H1|A〉 = 〈B|H1|B〉 = 0 we can say that

a) the energies of these states will be unchanged to first order in perturbation theory, so

there will still be a degeneracy at this order.

b) the energies may be split at first order in perturbation theory; to find out, we only need

to calculate 〈A|H1|B〉.
c) the energies may be split at first order in perturbation theory; to find out, we only need

to calculate 〈Ei|H1|A〉 and 〈Ei|H1|B〉 for all the other energy eigenstates |Ei〉.
d) the energies may be split at first order in perturbation theory; to find out, we need to

calculate 〈A|H1|B〉 and 〈Ei|H1|A〉 and 〈Ei|H1|B〉 for all the other energy eigenstates |Ei〉.

8) A quantum system consisting of a spin 1 particle and a spin 1/2 particle, both at fixed

locations, is described by a Hilbert space of dimension

a) 2 b) 3 c) 4 d) 5 e) 6

9) For a hydrogen atom in the state |l = 2 s = 1/2 J = 3/2 M = 1/2〉 in the L2, S2, J2, Jz

basis, if we measure Sz, the probability that we’ll find −~/2 is

a) 0

b) 1/5

c) 2/5

d) 3/5

e) 4/5

Note: there is a Clebsch-Gordon table on the formula sheet

10) Acting on a hydrogen atom state |l s = 1/2 J M〉 in the L2, S2, J2, Jz basis, the operator
~L · ~S multiplies this state by

a) ~2l/2
b) ~2lM
c) ~2(M/2 + Jl)

d) 1
2
~2(J(J + 1)− l(l + 1)− 3

4
)



11) When we estimate the energy of a quantum ground state using the variational method,

the result is

a) always less than the true ground state energy, so it provides a lower bound.

b) always greater than the true ground state energy, so it provides an upper bound.

c) either greater than or less than the ground state energy, depending on the choice of trial

wavefunction. By choosing different trial wavefunctions, we can establish both upper and

lower bounds on the energy.

12) A quantum system is in its ground state. If we add a small time-dependent perturbation

to the Hamiltonian that is nonzero during the interval 0 ≤ t ≤ T , we can say that

a) the system will generally be in some linear combination of more than one of the original

energy eigenstates during 0 ≤ t ≤ T but will be in the original ground state after time T .

b) the system will generally be in some linear combination of more than one of the original

energy eigenstates at any time t > 0.

c) the system will continue to have the same energy as it did originally, but various other

observables can change with time.

d) the system will always be in one of the energy eigenstates, but which state we are in can

make a transition during the period 0 ≤ t ≤ T .

13) The standard formulae for the stimulated emission and absorption rates in the dipole

approximation assume all of the following except:

a) the wavelength of the radiation is long compared with the size of the molecule

b) the radiation is incoherent (i.e. without phase correlations).

c) the amplitude of the electromagnetic fields is not too large.

d) the initial and final states each have nonvanishing electric dipole moment

14) Suppose a quantum system has a number atoms with two possible states a and b, with a

spontaneous emission rate A from b to a, and stimulated emission from b to a and absorption

from a to b governed by a rate R. If the number of atoms at some time in states a and b are

given by Na and Nb, then the time rate of change of the number of Na atoms will be

a) ANb +RNb

b) ANb −RNa

c) −ANb −RNb +RNa

d) −ANb +RNb −RNa

e) ANb +RNb −RNa



15) In a simple quantum field theory associated with a classical system that obeys the wave

equation, a particle can be understood as

a) one of the elementary constituents that make up the field through their collective motion

b) a pointlike object whose motion is what gives rise to oscillations in the field

c) a quantum of energy in a harmonic oscillator that describes a particular Fourier mode of

the field

d) a standing wave in the field whose position is localized to some small region

16) The Bell inequalities show that

a) statistical results of experiments measuring the spins of entangled particles cannot be

explained by a model in which measurement outcomes are predetermined and the measure-

ments do not affect each other.

b) the non-deterministic behaviour of quantum mechanics cannot really be true: there must

be some underlying description in which all states have definite values for physical observ-

ables.

c) quantum entanglement can be used to transmit information over large distances faster

than is possible according to the rules of special relativity.

d) the bells of St. Clement’s are always at least as loud as, but may be louder than the bells

of St. Martin’s.

Multiple Choice Answers (1 point each):

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15 16



Long answer (6 points each): Please write your answers in an exam booklet

Problem 1

For a hydrogen atom in a |100〉 state, the state of the proton and electron spins at t = 0 is

|ψ(t = 0)〉 = | ↑〉 ⊗ | ↓〉 = |mp =
1

2
,me = −1

2
〉 .

The Hamiltonian for this system can be approximated by

H =
E

~2
J2

where ~J = ~Je + ~Jp. If we measure the z component of the electron spin after time T , what

is the probability that we will find Sz = ~/2?

Problem 2

Suppose we would like to estimate the ground state energy for a single spin J = 3/2 particle

with Hamiltonian

H = −E0(
1

~
Jz +

1

~2
J2
x) E0 > 0 (1)

using the variational method with a trial state

cos(θ)|m =
3

2
〉+ sin(θ)|m = −1

2
〉

where θ is a variational parameter. What is the smallest upper bound on the ground state

energy that can be obtained with a trial state of this form?

Problem 3

The temperature at the surface of the sun is about 5.8× 103K.

a) At this temperature, what is the ratio Rstim/Rspon between the rates for stimulated and

spontaneous emissions from the |210〉 state of hydrogen to the ground state?

b) What is the spontaneous transition rate? These may be useful:

ψ100(~x) =
1
√
πa

3
2

e−
r
a ψ210(~x) =

1
√

32πa
3
2

r

a
e−

r
2a cos θ (x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ)

∫ ∞
0

dss3e−s = 6

∫ π

0

dθ sin θ cos2 θ =
2

3

(E100/~)3e2

3πε0~c3
= 6.08× 1026m−2s−1



Problem 4

A particle in a 1D harmonic oscillator potential interacts with another nearby spin half

particle whose location is fixed. The system may be described by a Hamiltonian

H =
p2

2m
+

1

2
mω2x2 − ω

2
Sz +

ε

2
(a†S− + aS+)

where ε can be treated as a small parameter and S± = Sx ± iSy as usual.

a) For ε = 0, what is the second excited state (i.e. the state with the 3rd lowest energy)?

b) Now suppose ε is positive but ε � ω . If the system is in the second excited state

(after taking into account the perturbation), and we measure Sz for the spin, what is the

probability that we will find ~/2 (in the approximation of first order perturbation theory)?

c) What is the energy of this state, including the leading non-vanishing dependence on ε?

Problem 5

Consider a quantum system described by a Hamiltonian

H =
p2

2m
+

1

2
k(t)x2 ,

where

k(t) = mω2
0 +

K

1 +
(
t
t0

)2 .
a) At t = −∞, the system starts in the ground state of the Hamiltonian at that time. For

small values of the parameter K, estimate the probability that the system will have made a

transition to some other state.

b) For which values of K do you expect your result to be reliable?

c) Is it possible that the system at t =∞ will be found in the state |4〉? Explain. If yes, can

you derive an expression for the probability of this or explain how such an expression might

be derived?

The following may or may not be useful:∫ ∞
−∞

dt
eikt

(1 + t2)
= πe−|k|

∫ ∞
−∞

dt
eikt

(1 + t2)2
= 4πe−|k|


