15) The quantum description of the electromagnetic field is mathematically equivalent to
a) the quantum theory of a collection of harmonic oscillators.

b) the quantum mechanics of many particles interacting via a Coulomb potential.

c) the quantum mechanics of many particles interacting only by exchange forces.

d) None of the above: the electromagnetic field is an inherently classical field that interacts
with quantum systems such as atoms and molecules.

16) In order to give a position-space description of the state of a, quantum system with two
particles in one dimension, we can use

a) two wavefunctions 1, (z) and (), one for each particle.

b) a single wavefunction ¥ (z, z;) depending on two position variables.

¢) two wavefunctions, 1; (1, 22) and (21, z,) each depending on two variables.

d) Either a) or b).

Multiple Choice Answers:




Problem 1

Consider the state [¥) = |n = 3,1 =2,m = 1) ® [s, = %) of an electron in a hydrogen atom.

a) For this state, if we measure J2, what values might we obtain and what are the corre-
sponding probabilities? (3 Po%w{’g}

b) If we perform an infinitesimal rotation of this state around the z axis by angle 6, what
is the change 6|¥) in the state? Write your answer in the |nlm) ® |s,) basis. (Note: don’t
worry about whether the rotation is clockwise or counterclockwise; just give the answer up to

an overall sign) (’2, ?O;,d*sj
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Problem 2

Abigail would like to estimate the ground state energy of a particle of mass m in a potential
V(z) = Az*. She decides to use the variational method with a family of trial states [P (w)) =
|0)w, ie. the ground state of a harmonic oscillator with frequency w (which she allows
to vary). Determine the best lower bound on the energy that can be obtained using this

method. (é ?o?zﬁé}

Hint: you can avoid calculating integrals by using the fact that the Hamiltonian for this

system can be written as
P’ 1 1 5
H“2 + Az -(———+2mwm)+(>\x ——imwa:)

where the first bracketed term is the harmonic oscillator Hamiltonian for frequency w.
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Problem 3

A particle of mass m is in the ground state of an infinite square well potential of width a.
Starting at ¢ = 0, the potential in the left half of the well increases at a constant rate from 0
to V in time 7" and then decreases back to zero at a constant rate in time 7. If V is small,
what is the probability that the particle will be found in the first excited state of the well at
time 277 Hint: the formula sheet should help. (é FOIA—}sv
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Problem 4

A cavity contains 3N molecules with two available states. There are 2N molecules in the
ground state |0) with energy Ey and N molecules in an excited state |1) with energy E; >
Ep. The cavity contains incoherent electromagnetic radiation; the energy density per unit

frequency is described by some function p(w). (6 P o0 ,\—}57

a) Describe the various physical processes that could cause the number of molecules in each
state to change with time.

b) If the matrix elements for the components of the electric dipole operator are given by
(1[P=[0) = (1[Py|0) = (1[P,]0) = p
what condition on p(w) ensures that the number of molecules in each state will remain

constant on average?
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Problem 5

Consider two nearby spin half particles at fixed location. The particles sit in a magnetic

field which leads to a term o

Hy = (S0, + 5(52).) (1)

in the Hamiltonian; they also have an interaction between their magnetic moments that

results in a spin-spin interaction

[
[

) |
H.= Sl 8=t (Ske = 51— 53) (2)

Here, §1 and 52 are the angular momentum operators for the two spins and §tot = §1 -+ §2

a) Assuming that A and C are positive and A << C what is the energy of the ground state
to the first nonzero order in A? What is the ground state in the limit that A — 0? (3 ?oi.'ﬁ Sj

b) Now suppose that ' << A. In this case, what is the energy of the ground state to the
first nonzero order in C? What is the ground state in the limit that C' — 0? ( 3 Fo}n‘\'s)

c¢) Make a qualitative graph of all energy levels of the system as A is varied from large negative
values to large positive values for fixed C (1 e. plot E vs 4 for each energy eigenvalue, all

on the same graph). (2 pos ,\"\'37 >0
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