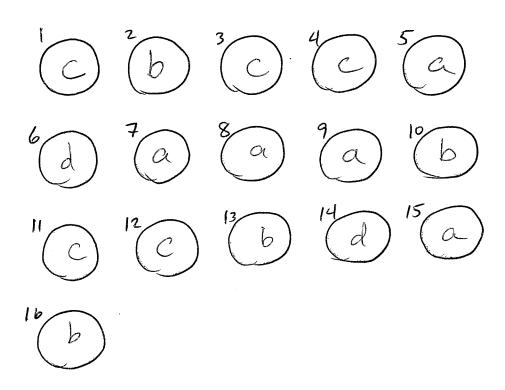
- 15) The quantum description of the electromagnetic field is mathematically equivalent to
- a) the quantum theory of a collection of harmonic oscillators.
- b) the quantum mechanics of many particles interacting via a Coulomb potential.
- c) the quantum mechanics of many particles interacting only by exchange forces.
- d) None of the above: the electromagnetic field is an inherently classical field that interacts with quantum systems such as atoms and molecules.
- 16) In order to give a position-space description of the state of a quantum system with two particles in one dimension, we can use
- a) two wavefunctions $\psi_1(x)$ and $\psi_2(x)$, one for each particle.
- b) a single wavefunction $\psi(x_1,x_2)$ depending on two position variables.
- c) two wavefunctions, $\psi_1(x_1, x_2)$ and $\psi_2(x_1, x_2)$ each depending on two variables.
- d) Either a) or b).

Multiple Choice Answers:



. k

Consider the state $|\Psi\rangle=|n=3,l=2,m=1\rangle\otimes|s_z=\frac{1}{2}\rangle$ of an electron in a hydrogen atom.

- a) For this state, if we measure J^2 , what values might we obtain and what are the corresponding probabilities? (3 points)
- b) If we perform an infinitesimal rotation of this state around the x axis by angle θ , what is the change $\delta|\Psi\rangle$ in the state? Write your answer in the $|n\ l\ m\rangle\otimes|s_z\rangle$ basis. (Note: don't worry about whether the rotation is clockwise or counterclockwise; just give the answer up to an overall sign) (3 points)
- a) Using the CG table, we have:

For
$$l=2 \times s=\frac{1}{2}$$
:
$$|n=3 \ l=2 \ m=1 > \otimes |s_{z}=\frac{1}{2} > = \frac{2}{\sqrt{5}} |n=3 \ l=2 \ J=\frac{2}{2} M=\frac{2}{2} > = \frac{1}{2} |n=3 \ l=2 \ J=\frac{2}{2} M=\frac{2}{2} |n=3 \ l=2 \ J=\frac{2}{2} M=\frac{2}{2} M=\frac{2}{2} |n=3 \ l=2 \ J=\frac{2}{2} M=\frac{2}{2} |n=3 \ l=2 \ J=\frac$$

The allowed
$$J^2$$
 values are this $t^2 \cdot J(J+1) = \begin{cases} \frac{35}{4}t^2 & \text{probability } \frac{4}{5} \\ \frac{15}{4}t^2 & \text{probability } \frac{1}{5} \end{cases}$

b) The infinitesimal rotation generator is the angular momentum operator $J_x = L_x + S_x$. The change in the state is

$$S|\Psi\rangle = \pm \frac{i}{\hbar} \theta (L_x |\Psi\rangle + S_x |\Psi\rangle)$$

Using $L_x = \frac{1}{2}(L_+ + L_-)$ and $S_x = \frac{1}{2}(S_+ + S_-)$, we get:

$$S(\underline{P}) = \pm \frac{i}{\hbar} \theta \left(\frac{1}{2} \cdot h \sqrt{2 \cdot 3} - 1 \cdot 2 \right) |_{n=3} \ell = 2 |_{n=2} \otimes |_{s_{\pm} = \frac{1}{2}} \right)$$

$$+ \frac{1}{2} \cdot h \sqrt{2 \cdot 3} - 1 \cdot 0 |_{n=3} \ell = 2 |_{n=0} \otimes |_{s_{\pm} = -\frac{1}{2}} \right)$$

$$+ \frac{1}{2} |_{n=3} \ell = 2 |_{n=4} \otimes |_{s_{\pm} = -\frac{1}{2}} \right)$$

$$= \pm \frac{i}{2} \theta \left(2|3 + 2 \rangle \otimes |\frac{1}{2} \rangle + \sqrt{6}|3 + 2 \rangle \otimes |\frac{1}{2} \rangle + |3 + 2 \rangle \otimes |-\frac{1}{2} \rangle \right)$$

Abigail would like to estimate the ground state energy of a particle of mass m in a potential $V(x) = \lambda x^4$. She decides to use the variational method with a family of trial states $|\Psi(\omega)\rangle = |0\rangle_{\omega}$, i.e. the ground state of a harmonic oscillator with frequency ω (which she allows to vary). Determine the best lower bound on the energy that can be obtained using this method.

Hint: you can avoid calculating integrals by using the fact that the Hamiltonian for this system can be written as

$$H = \frac{p^2}{2m} + \lambda x^4 = (\frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2) + (\lambda x^4 - \frac{1}{2}m\omega^2 x^2) ,$$

where the first bracketed term is the harmonic oscillator Hamiltonian for frequency ω .

PRODUCY A BIT EASIER:

MAlfernatively just write

$$x^4$$
 and p^2 using

creation to annihilation operators

 $\frac{1}{2}$

We have:

 $(a+a^{\frac{1}{2}}) | \underline{F}_{\omega} \rangle = (a+a^{\frac{1}{2}}) | 1 \rangle_{\omega} = 1$
 $(a+a^{\frac{1}{2}}) | \underline{F}_{\omega} \rangle = (a+a^{\frac{1}{2}}) | 1 \rangle_{\omega} = 1$

We have:

 $(a+a^{\frac{1}{2}}) | \underline{F}_{\omega} \rangle = (a+a^{\frac{1}{2}}) | 1 \rangle_{\omega} = 1$
 $(a+a^{\frac{1}{2}}) | \underline{F}_{\omega} \rangle = (a+a^{\frac{1}{2}}) | 1 \rangle_{\omega} = 1$

Then $E_0 \leqslant \frac{\pi\omega}{2} + \lambda (\frac{\pi\omega}{2m\omega}) \cdot 3 - \frac{\pi\omega}{4} = \frac{\pi}{4}\omega + (\frac{3\lambda\pi^2}{4m^2}) \cdot \frac{1}{\omega^2}$

Minimizing over ω , we find the min at $\frac{\pi}{4} - \frac{3\lambda\pi^2}{2m^2} \cdot \frac{1}{\omega^3} = 0$, so

 $\omega_{min} = \sqrt[3]{6\lambda\pi}$

So the best bound is

 $E_0 \leqslant \frac{3\sqrt[3]{5}}{2\sqrt{3}} \frac{\lambda^{\frac{1}{3}}}{2\sqrt{3}}$

A particle of mass m is in the ground state of an infinite square well potential of width a. Starting at t=0, the potential in the left half of the well increases at a constant rate from 0 to V in time T and then decreases back to zero at a constant rate in time T. If V is small, what is the probability that the particle will be found in the first excited state of the well at time 2T? Hint: the formula sheet should help.

$$H'(t) = \begin{cases} \frac{1}{2} & \text{of } x \leq \frac{a}{2} \\ 0 & \text{elsewhere} \end{cases}$$

The transition probability is
$$P_{1\rightarrow 2} = \left| \frac{1}{t} \int_{0}^{2T} dt \, H_{21}(t) \, e^{i\omega_{0}t} \right|^{2} \quad \text{where} \quad \omega_{0} = \frac{E_{2} - E_{1}}{t}$$

$$= \frac{3\pi^{2}t}{2ma^{2}}$$

Here
$$H'_{21}(t) = \langle 2|H'(t)|1\rangle$$

$$= \sqrt{\frac{2}{3}}\sqrt{\frac{2}{3}}(x)\sqrt{\frac{1}{2}}(x)dx f(t)$$

$$= \sqrt{\frac{2}{3}}\sqrt{\frac{2}{3}}(x)\sqrt{\frac{2\pi x}{a}}\sin(\frac{2\pi x}{a})\sin(\frac{2\pi x}{a}) = \frac{2\sqrt{\frac{2}{3}}}{\frac{2}{3}}f(t)\int_{0}^{\frac{2}{3}}2\sin^{2}(\frac{\pi x}{a})\cos(\frac{\pi x}{a})dx$$

$$= \frac{4\sqrt{\frac{2}{3}}}{\frac{2}{3}}f(t)\frac{1}{3}\sin^{2}(\frac{\pi x}{a})\cdot\frac{a}{\pi}\Big|_{0}^{\frac{2}{3}}$$

$$= \frac{4\sqrt{\frac{2}{3}}}{\frac{2}{3}}f(t)$$

Then
$$P_{1\rightarrow 2} = \frac{16V^2}{9\pi^2 t^2} \left| \int_0^{2T} dt f(t) e^{i\omega t} \right|^2 = \frac{256V^2}{9\pi^2 t^2 \omega^4 T^2} \sin^4\left(\frac{\omega T}{2}\right)$$

Where we used $\int_0^{2T} dt f(t) e^{i\omega t} = \int_0^{T} dt \frac{t}{T} e^{i\omega t} + \int_T^{2T} \frac{(2T-1)}{T} e^{i\omega t} = \int_0^{T} dt \frac{t}{T} \left(e^{i\omega t} + e^{i\omega(2T-t)}\right)$

$$= \frac{T}{\omega^2 T^2} \left(1 - e^{i\omega T} \right)^2 = -\frac{e^{i\omega T}}{\omega^2 T^2} \left(2i \sin \left(\frac{\omega T}{2} \right) \right)^2$$

A cavity contains 3N molecules with two available states. There are 2N molecules in the ground state $|0\rangle$ with energy E_0 and N molecules in an excited state $|1\rangle$ with energy $E_1 > E_0$. The cavity contains incoherent electromagnetic radiation; the energy density per unit frequency is described by some function $\rho(\omega)$.

- a) Describe the various physical processes that could cause the number of molecules in each state to change with time.
- b) If the matrix elements for the components of the electric dipole operator are given by

$$\langle 1|\mathcal{P}_x|0\rangle = \langle 1|\mathcal{P}_y|0\rangle = \langle 1|\mathcal{P}_z|0\rangle = p$$
,

what condition on $\rho(\omega)$ ensures that the number of molecules in each state will remain constant on average?

- a) We can have 10>>11> through absorption of radiation, 12>>10> through stimulated emission, and 11>>10> through spontaneous emission.
- b) The rate (per atom) for the absorption and stimulated emission processes are:

$$R = \frac{\pi}{3\epsilon_{o}h^{2}} \vec{P}_{ab} \cdot \vec{P}_{ab} \int (\omega_{o}) \text{ where } \omega_{o} = \frac{E_{2} - E_{o}}{h}$$

$$= \frac{\pi p^{2}}{\epsilon_{o}h^{2}} \int (\omega_{o})$$

The rate for massportaneous emission is
$$A = \frac{\omega_0^3 |\vec{P}_{ab}|^2}{3\pi \varepsilon_0 t_0 c^3} = \frac{\omega_0^3 p^2}{\pi \varepsilon_0 t_0 c^3}$$

$$\frac{dN_o}{dt} = -N_o \cdot R + N_i \cdot R + N_i \cdot A$$

We won't this to be zero for No = ZN and Ni = N, so:

$$\Rightarrow R = A$$

$$\Rightarrow p(\omega_0) = \frac{1}{\pi^2} \frac{\omega_0^3}{c^3}$$

Consider two nearby spin half particles at fixed location. The particles sit in a magnetic field which leads to a term

 $H_1 = \frac{C}{\hbar}((S_1)_z + \frac{1}{2}(S_2)_z)$ (1)

in the Hamiltonian; they also have an interaction between their magnetic moments that results in a spin-spin interaction

Here, \vec{S}_1 and \vec{S}_2 are the angular momentum operators for the two spins and $\vec{S}_{tot} = \vec{S}_1 + \vec{S}_2$

- a) Assuming that A and C are positive and $A \ll C$ what is the energy of the ground state to the first nonzero order in A? What is the ground state in the limit that $A \to 0$?
- b) Now suppose that $C \ll A$. In this case, what is the energy of the ground state to the first nonzero order in C? What is the ground state in the limit that $C \to 0$? (3 points)
- c) Make a qualitative graph of all energy levels of the system as A is varied from large negative values to large positive values for fixed C (i.e. plot E vs \triangle for each energy eigenvalue, all (2 points) >0 on the same graph).
- a) For A=0, the ground state is $|\downarrow\downarrow\rangle$ with energy $\frac{C}{T}(-\frac{t_1}{2} \frac{t_2}{4}) = -\frac{3}{4}C$ We can find the energy to order A using non-degenerate perturbation theory. Since IV) is the state |J= | M=-1> we have:

 $SE = \langle \psi_{0} | H_{2} | \psi_{0} \rangle = \frac{A}{2} \left(J(J+1) - S_{1}(S_{1}+1) - S_{2}(S_{2}+1) \right) = \frac{A}{2} \cdot \left(2 - \frac{3}{4} - \frac{3}{4} \right) = \frac{A}{4}$ So the energy to order A is $-\frac{3}{4}C + \frac{1}{4}A + O(A^2)$ actually, o

b) For C > 0 the Hamiltonian is diagonal in the J2, Jz basis, and the lowest energy is for the J=0 state, with E = = A (0-32-32) = -3A

The ground state is loo) = = [(11)-111)

To find the energy at order C, we can again use non-deg. parturbation theory. We have: (00/H, 100) = (= (11)- = (11) C. + (11) + 1/11)= = 0.

So we need to go to second order. We get this is IJ=1 M=0>x constant.

$$SE_{2} = \frac{\sum_{n=0}^{\infty} \frac{\left(\frac{1}{5}(1)\right)^{2} + \frac{1}{5}(1)}{E_{0} - E_{10}}}{E_{0} - E_{10}} = \frac{\left(\frac{1}{5}(1)\right)^{2} + \frac{1}{5}(1)\frac{C}{5}(1) + \frac{1}{5}(1)\frac{C}{5}(1) + \frac{1}{5}(1)\frac{C}{5}(1)}{E_{10} - \frac{1}{4}A} - \frac{C^{2}}{4A} - \frac{C^{2}}{4A}$$

$$= -\frac{C^{2}}{16A}$$
So the energy is $-\frac{3}{4}A - \frac{C^{2}}{16A} + O(C^{3})$

e) For this part, we will just find the exact eigenvalues.

First, the states 197> and 111> are eigenstates of both H1 and H2, with eigenvalues $\frac{3}{4}C + \frac{A}{4}$ and $-\frac{3}{4}C + \frac{A}{4}$ respectively.

For the remaining states, 100) and 110), the matrix elements for Hi+Hz are:

The eigenvalues are solutions of $\chi^2 + \frac{A}{2} \chi - \frac{3A^2}{16} - \frac{C^2}{16}$. So

$$\lambda = -\frac{A}{4} + \frac{1}{4}\sqrt{4A^2 + C^2}$$

For
$$\lambda = -\frac{A}{4} + \frac{1}{4}\sqrt{4A^2 + C^2}$$
 we get $\frac{C}{4}$ for $A = 0$

$$\frac{A}{4} + \frac{C^2}{16A}$$
 for large the A

$$-\frac{3A}{4} - \frac{C^2}{16A}$$
 for large the A

For
$$\lambda = -\frac{A}{4} - \frac{1}{4} \sqrt{4A^2 + C^2}$$
 we get $-\frac{C}{4}$ for $A = 0$

$$-\frac{3A}{4} - \frac{C^2}{16A}$$
 for large the A

$$+\frac{A}{4} + \frac{C^2}{16A}$$
 for large the A

Putting everythings together, we get:

Slope 4

Slope 4

Slope -3
4