
Rotations in Quantum Mechanics

We have seen that physical transformations are represented in quantum mechanics by unitary
operators acting on the Hilbert space. In this section, we’ll think about the specific case of the
three-dimensional rotations. Our setup is that we have a Hilbert space of some dimension,
and this describes states of a physical system that has 3D rotations as a possible physical
transformation; that is, given any state of the system, there should be some other state that
is a rotated version of the original state.

For every possible rotation R, there should be some corresponding unitary operator T (R)
acting on our Hilbert space. Just like the Hamiltonian is different for different quantum sys-
tems, the rotation operators T (R) will generally be different in different systems. However,
the map from rotations to unitary operators can’t just be anything; if R1 and R2 are two
different rotations, and R = R2 ◦ R1 is the rotation we get by performing first R1 and then
R2, we must have that

T (R) = T (R2)T (R1) . (1)

This is just saying that if we perform the rotation R on the quantum system “all at once,”
it should give the same result as performing the rotation in two steps, first rotation by R1

and then by R2.

Since any rotation can be built up from infinitesimal rotations, we can use the relation (1)
to find the unitary corresponding to any rotation as long as we know the unitary operators
corresponding to the independent infinitesimal rotations. Let’s think about any one of these
infinitesimal transformations, for example the “right handed” rotation about axis n̂. We
know that this must take the form

T (ε) = 1− i

~
εJn + . . . . (2)

Here, the operator Jn is Hermitian, and we know that the associated physical observable will
be conserved if rotations are a symmetry. This quantity is what we normally call angular
momentum about the axis n̂, and we have included the constant ~ so that the operator J
will agree with the usual definition of angular momentum.

So once we understand what the angular momentum operators Jn are for our system, we will
know how any rotation acts. We can actually simplify things further: it’s not too hard to
see that we can make any infinitesimal rotation by combining infinitesimal rotations about
the x, y, and z axes.1 Specifically, we can write:

Jn = nxJx + nyJy + nzJz (3)

1To visualize this, pick up an object and imagine some axis through it. Call this the z axis. After any
infinitesimal rotation, this will now be pointing in a slightly different direction, and the object might have
rotated a bit about this axis. We can reproduce this combination first by doing a z rotation to reproduce
the last effect, and then by doing a combination of little rotations around the x and y axes to make the axis
point in the needed direction.
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So we really only need to say what the operators Jx,Jy, and Jz are, and then we will known
how any rotation acts.

There is one final piece of information that we can use. If you pick up an object, then rotate
it a little about x axis, and then a little about the y axis, the result is not the same when you
do those operations in the opposite order.2 We can say that these operations don’t commute
with each other. This should be reflected in the fact that the operators Jx and Jy also don’t
commute with each other (otherwise, we would be able to perform those operations on the
quantum system in any order and get the same result). In fact, there is a definite answer to
what rotation we get when we rotate by angle ε1 about the x axis, then a rotation by angle
ε2 about the y axis, then reverse these, but in the opposite order; in the limit where ε1 and
ε2 are very small, it’s exactly a rotation by angle −ε1ε2 about the z axis.3 If we do these
operations on our quantum system, the relation (1) then implies that

(1 +
i

~
ε2Jy)(1 +

i

~
ε1Jx)(1−

i

~
ε2Jy)(1−

i

~
ε1Jx) = (1 +

i

~
ε1ε2Jz + . . . ) (4)

where the dots indicate terms with higher powers of ε1 or ε2. Keeping only the terms in this
equation proportional to ε1ε2, we get [Jx, Jy] = i~Jz. We could repeat this argument with
y and z rotations or with x and z rotations. The final result is that if Ji are the Hermitian
operators representing the rotation generators (i.e. the angular momentum operators) for
any quantum system, they must obey the commutation relations

[Jx, Jy] = i~Jz
[Jy, Jz] = i~Jx
[Jz, Jx] = i~Jy (5)

in order for (1) to hold, i.e. in order that the rotation operations in quantum mechanics
combine in the correct way. If we choose some basis for our Hilbert space, then Jx, Jy, and
Jz will be represented by some matrices in this basis, and these matrices must also obey the
commutation relations (5).

Understanding the possible operators/matrices that satisfy the commutation relations (5)
is described mathematically as the problem of finding the possible representations of the
rotation group.

Example: particle in three dimensions

The form of the angular momentum operators differs depending on the quantum system we
are talking about. For a particle moving in three-dimensional space, the familiar classical
definition of angular momentum is ~L = ~r × ~p. Writing this out in components, we would

2This is easiest to see if you actually rotate by a larger amount, like 90 degrees.
3This is just a basic fact about rotations; it doesn’t have anything to do with quantum mechanics. To

check it, we just need to carefully rotate an object (or do a calculation involving rotation matrices).
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have
Lx = ypz − zpy Ly = zpx − xpz Lz = xpy − ypx . (6)

In the quantum system, it is natural to guess that the angular momentum operators would
be just the same, with positions and momenta replaced by the corresponding operators:

L̂x = ŷp̂z − ẑp̂y L̂y = ẑp̂x − x̂p̂z L̂z = x̂p̂y − ŷp̂x . (7)

Using the basic commutation relations [xi, pj] = i~δij between positions and momenta, we
can check that these quantum angular momentum operators satisfy the necessary relations
(5) and so are a valid choice for the operators Ji. In this example, the angular momentum
operators give the ordinary angular momenta of the particle about the origin. The fact that
the various angular momentum operators don’t commute means that a particle can’t have a
definite angular momentum about more than one axis.

Example: spin half particle

The previous example was for an infinite dimensional Hilbert space. But there are also much
simpler quantum systems that we can rotate. You are probably familiar with the simplest
case, where the Hilbert space is two-dimensional and the angular momentum operators take
the form Ji = Si where the matrices representing Si are the Pauli matrices σi, given by

σx =
~
2

(
0 1
1 0

)
σy =

~
2

(
0 −i
i 0

)
σz =

~
2

(
1 0
0 −1

)
. (8)

This quantum system describes the “internal” states of certain types of particles that we
call spin 1/2. What this means is that even after we specify the position (i.e. the spatial
wavefunction) of such a particle, we need to specify more information to say what state the
particle is in. For a spin 1/2 particle, there are just two independent states that the particle
can be in, with all other states obtained as linear combinations of these. We’ll understand
how to derive the Pauli matrices below.

Example: combining representation

Any time we have two quantum systems, each one with some angular momentum operators,
we can combine these into a single quantum system describing both parts. For example,
when we think about an electron in a hydrogen atom, we need to describe both the electron’s
position and its spin state. The full quantum system is described by basis elements that are
combinations of basis elements for the two systems. For example, we can use |~x, ↑〉, |~x, ↓〉
describing the electron with spin up at position ~x and an electron with spin down at position
~x. For this system, the full angular momentum operators will just be a sum of the operators
for the two parts

Ji = Li + Si . (9)
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This says that the angular momentum of the full system is equal to the angular momentum
from the electron’s orbital motion plus the angular momentum from the electron’s spin.
Alternatively, it says that a rotation on the system affects both the electron’s spin state and
its position state.

We’ll also see examples where we want to keep track of the spin state of two different
particles. For example, for an electron in the 1s state of hydrogen, there is no orbital angular
momentum (the wavefunction is rotationally symmetric), but the total angular momentum of
the system is a combination of the angular momentum from the electron spin and the proton
spin. The spin states of these two particles are described by a four-dimensional quantum
system with basis elements | ↑, ↑〉, | ↓, ↑〉, | ↓, ↑〉, and | ↓, ↑〉, and angular momentum operators

Ji = Sprotoni + Selectroni . (10)

In these examples, the angular momentum operators for the different parts of the system
commute with each other, since each part has its own independent angular momentum.

1 Finding the possible rotation matrices

There is a well-defined mathematical procedure to determine the possible forms of the an-
gular momentum/rotation operators similar to how we found the states and energies of the
harmonic oscillator. This is described in Griffiths section 4.3.1, so I won’t go over it in detail
here.

A key point is that the operator

J2 = JxJx + JyJy + JzJz (11)

commutes with all the rotation operators. This implies that if we have some eigenstate of
J2, we can act with any combination of Ji operators, and the result will still be an eigenstate
of J2 with the same eigenvalue.

For any eigenstate of J2, we can consider all the states that can be obtained from it by
acting with the rotation and/or angular momentum operators. This forms some subspace of
the whole system, and we can show that the size of the subspace is completely determined
by the value of J2. The possible eigenvalues of J2 are ~2j(j + 1) where j is a nonnegative
integer or half-integer, and the number of states in the subspace with this J2 eigenvalue is
2j + 1. We can choose a basis for this subspace where the basis elements are eigenvectors of
Jz and show that the eigenvalues must be ~m where m = −j,−j + 1, . . . , j − 1, j.

In cases where the whole system has a rotation symmetry (i.e., the Ji matrices all commute
with the Hamiltonian), then J2 also commutes with the Hamiltonian, so we can find a basis
of states which are energy eigenstates and also eigenstates of J2 and Jz.

4



2 What you really need to know

For any quantum system that admits 3D rotations, there will be some set of angular mo-
mentum operators Ji satisfying the basic commutation relations (5). From these, we can
build the infinitesimal rotation operators (2) or the general rotation operator

e−
i
~ θniJi (12)

which is a right-handed rotation by angle θ about the axis described by unit vector ni.

The full set of states of the Hilbert space splits up into subspaces, where the states in each
subspace all have the same total angular momentum (i.e. J2 eigenvalue) and can all be
obtained from each other by acting with Ji operators. We can choose a basis for such a
subspace, where the basis elements are eigenstates of both J2 and Jz. These are labeled as
|jm〉 where j is a nonnegative integer or half-integer, and m runs over the 2j + 1 possible
values (−j,−j + 1, . . . , j − 1, j). For the state |jm〉, we have

Jz|jm〉 = ~m|jm〉
J2|jm〉 = ~2j(j + 1)|jm〉

. (13)

We can say how the other operators Jx and Jy act by defining

J+ = Jx + iJy J− = Jx − iJy . (14)

Then these act a bit like creation and annihilation operators for the harmonic oscillator:

J+|jm〉 = ~
√
j(j + 1)−m(m+ 1)|jm+ 1〉

J−|jm〉 = ~
√
j(j + 1)−m(m− 1)|jm− 1〉

. (15)

Here, we note that J+|jj〉 = J−|j − j〉 = 0 so we only have 2j + 1 states in each group.

Addition of angular momentum

Finally, we sometimes need to know how angular momenta combine with each other in
a multipart system. Say we have a system with two parts (e.g. an electron spin and a
proton spin). Then everything we just said applies for each of the parts but also for the

individual parts. We have rotation/angular momentum operators J
(1)
i , (J (1))2, J

(2)
i , (J (2))2

for the individual parts but also the angular momentum operators Ji = J
(1)
i + J

(2)
i and

J2 = (J
(1)
i + J

(2)
i )2 for the whole system.

Let’s say we consider a subspace of the full system where the two parts have total angular
momentum described by j1 and j2. Then we can show that the J for the full system must
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be somewhere in the range J = |j1 − j2|, |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2. But not every
state with definite values for j1 and j2 has a definite value for J .

The operators J
(1)
z , (J (1))2, J

(2)
z , (J (2))2 all commute with each other, so we can find a basis of

states which are eigenstates of all of these; we can write these as |j1m1j2m2〉. But these won’t

be eigenstates of J2, since J2 doesn’t commute with J
(1)
z or J

(2)
z . Thus, if we want to talk

about states of a definite total J2, we need to use another basis. Since J2, (J (1))2, (J (2))2, Jz
all commute with each other, we can choose a basis of eigenstates of all of these; we label
these basis elements by |j1j2JM〉.

Since we now have two bases for our states, it must be possible to express any basis element
in one basis in terms of a basis element in another basis. That is, we can write

|j1j2JM〉 =
∑

m1+m2=M

Cj1j2J
m1m2M

|j1m1j2m2〉 (16)

for come coefficients Cj1j2J
m1m2M

, which are known as the Clebsch-Gordon coefficients and can
be looked up in tables (table 4.8 in Griffiths). We can also go the other direction and write

|j1m1j2m2〉 =
∑

J,M=m1+m2

Cj1j2J
m1m2M

|j1j2JM〉 (17)

where exactly the same coefficients appear.

The details of how to figure out the Clebsch-Gordon coefficients are in Griffiths 4.4.3.

3 Reading/review questions

1) For a state in some quantum system described in the notation above by |jm〉 = |2 1〉,
what is Jx|2 1〉?

2) For a hydrogen atom (if we ignore all spin effects), there are various energy levels that we
usually label by n with n a positive integer. For the states in level n, what are the possible
values of total angular momentum L2? What is the total dimension of the subspace of states
in the level n (again ignoring spin)? What is the total dimension if we include electron spin?

3) Suppose we have an electron (j1 = 1/2) in a rotationally invariant wavefunction (i.e.
angular momentum 0) about a nucleus with j2 = 3/2. What are the possible values for
the total angular momentum of this system? List the allowed values of (J,M) for the total
system.
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