Physics 402 Quiz 2, February, 2019

1) For a harmonic oscillator system, the state $x^2|2\rangle$ can be written as a superposition of harmonic oscillator energy eigenstates. Which of the following states is not part of this superposition?

- a) $|0\rangle$
- b) $|1\rangle$
- c) $|2\rangle$
- d) $|4\rangle$

2) For a harmonic oscillator system, the expectation value $\langle n|p|n\rangle$ is

a) Zero for all energy eigenstates $|n\rangle$.

b) Zero for some energy eigenstates and nonzero for some energy eigenstates $|n\rangle$.

c) Nonzero for all energy eigenstates $|n\rangle$.

3) If we add a perturbation λp^2 to the harmonic oscillator Hamiltonian, the shift in energy of the first excited state is

a)

- $\lambda \langle 0|p^2|0
 angle$
- b)

$$\lambda \sum_{n} \frac{\langle 0|p^2|n\rangle}{E_n - E_0}$$

c)

$$\lambda \sum_{n} \frac{|\langle n|p^2|1\rangle|^2}{E_n - E_0}$$
d)

$$\lambda \langle 1|p^2|1\rangle$$

e)

zero

4) If a Hamiltonian H_0 has two degenerate states $|A\rangle$ and $|B\rangle$ and we add a perturbation H_1 to the system such that $\langle A|H_1|A\rangle = \langle B|H_1|B\rangle = 0$ we can say that

a) the energies of these states will be unchanged to first order in perturbation theory, so there will still be a degeneracy at this order.

b) the energies may be split at first order in perturbation theory; to find out, we only need to calculate $\langle A|H_1|B\rangle$ and/or $\langle B|H_1|A\rangle$.

c) the energies may be split at first order in perturbation theory; to find out, we only need to calculate $\langle E_i | H_1 | A \rangle$ and $\langle E_i | H_1 | B \rangle$ for all the other energy eigenstates $|E_i\rangle$.

d) the energies may be split at first order in perturbation theory; to find out, we need to calculate $\langle A|H_1|B\rangle$ and $\langle E_i|H_1|A\rangle$ and $\langle E_i|H_1|B\rangle$ for all the other energy eigenstates $|E_i\rangle$.

5) A particle is in the ground state of an infinite square well potential located on the interval [-L, L]; call the wavefunction for this particle $\psi_0(x)$. If we perturb the system by adding a potential $\lambda V(x)$, the first order shift in ground state energy will be equal to zero if

a) V(0) = 0

b)
$$\int_{-L}^{L} dx V(x) = 0$$

c)
$$\int_{-L}^{L} dx V(x) \psi_0(x) = 0$$

d)
$$\int_{-L}^{L} dx V(x) |\psi_0(x)|^2 = 0$$

6) For a harmonic oscillator, we have $\langle n|x^4|n\rangle = \hbar^2/(2m\omega)^2(6n^2 + 6n + 3)$. If we add a perturbation λx^4 to the harmonic oscillator potential for some small λ and calculate the eigenstate energies to first order in λ , we would expect the result to be closer to the exact result for the energy for

- a) smaller values of n.
- b) larger values of n.
- c) Neither: the first order approximation will have similar accuracy for any value of n.