Physics 402 Quiz 1, February 1, 2018

1) For a harmonic oscillator system, which of the following is zero?

- a) $\langle 0|x^2|0\rangle$
- b) $\langle 2|x^2|2\rangle$
- c) $\langle 2|a^2 + (a^{\dagger})^2|2\rangle$
- d) $\langle 0 | a^2 (a^{\dagger})^2 | 0 \rangle$
- e) 17

2) We add a perturbation λx^2 to a harmonic oscillator Hamiltonian. The first order shift in the ground state $|0\rangle$ is a linear combination $c_n|n\rangle$ of the original harmonic oscillator eigenstates. For how many n is c_n not zero?

- a) 1
- b) 2
- c) 3
- d) 4
- e) ∞

3) The first order shift in the energy of the ground state for the perturbation in the previous question is

a)

 $\lambda \langle 0 | x^2 | 0
angle$

b)

$$\lambda \sum_{n} \frac{\langle 0|x^{2}|n \rangle}{E_{n} - E_{0}}$$
c)

$$\lambda \sum_{n} \frac{\langle n|x^{2}|0 \rangle}{E_{n} - E_{0}}$$
d)

$$\lambda \langle 1|x^{2}|1 \rangle$$

e)

4) A Hamiltonian H_0 has two states $|A\rangle$ and $|B\rangle$ with the same energy E. Which of the following is true about the system if we add a small perturbation λH_1 to the Hamiltonian? a) The perturbed system will have energy eigenstates with energies close to E and these will be close to $|A\rangle$ and $|B\rangle$.

c) The perturbed system will have energy eigenstates with energies close to E but these won't necessarily be close to $|A\rangle$ and $|B\rangle$

b) The perturbed system will have energy eigenstates close to $|A\rangle$ and $|B\rangle$ but their energies won't necessarily be close to E.

d) The perturbed system will usual have neither energy eigenstates with energies close to E nor energy eigenvectors close to $|A\rangle$ and $|B\rangle$

5) A particle is in the ground state of an infinite square well potential located on the interval [0, L]; call the wavefunction for this particle $\psi_0(x)$. If we perturb the system by adding a potential $\lambda V(x)$, the shift in ground state energy will be equal to

a) V(L/2)

b)
$$\int_0^L dx V(x)$$

- c) $\int_0^L dx V(x)\psi_0(x)$
- d) $\int_{0}^{L} dx V(x) |\psi_0(x)|^2$
- e) All of the above are correct
- 6) If we use the formula

$$E_n^2 = \sum_{m \neq n} \frac{|\langle m | H_1 | n \rangle|^2}{E_n - E_m}$$
(1)

to calculate the second order shift in energy for the ground state (i.e. the lowest energy n = 0 state) of a quantum system, the result will always be

- a) positive
- b) negative
- c) zero

Hint: the answer is apparent from the formula.

Please fill in:

Answers

1	2	3	4	5	6