Physics 402 Quiz 1, Feb 5, 2020

Name/Student Number:

- 1) Which of the states below is physically equivalent to the (unnormalized) state $i|\uparrow\rangle-2|\downarrow\rangle$?
- a) $i|\uparrow\rangle + 2|\downarrow\rangle$
- b) $\frac{1}{3} |\uparrow\rangle \frac{2}{3}i |\downarrow\rangle$

d) $-i|\uparrow\rangle - 2|\downarrow\rangle$

both Z and X.

- e) none of the above
- 2) For a quantum system with a two-dimensional Hilbert space, observables Z and X are represented by $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ in the basis of Z eigenstates. For this system, we can say that
- a) There are no states with a definite value of either Z or X.

 b) Certain states have a definite value for Z or X, but no states have a definite value for
- c) Most states do not have a definite value for both Z and X but certain special states do.
- d) All states have a definite value for both Z and X.
- 3) At time t = 0, the state of a quantum system with a <u>time-independent Hamiltonian</u> is a linear combination of energy eigenstates with different energies: (

y eigenstates with different energies: (Every conserved!
$$|\Psi(t=0)\rangle = \sqrt{\frac{1}{3}}|E_1\rangle + \sqrt{\frac{2}{3}}|E_2\rangle \ . \tag{E}$$
 and (1)
$$\mathsf{p}(\Xi_i) \text{ constant in three}$$

For this state,

- (a) the probability of finding E_1 in a measurement of energy doesn't change with time, and the expectation value of energy doesn't change with time.
- b) the probability of finding E_1 in a measurement of energy doesn't change with time, but the expectation value of energy can change with time.
- c) the probability of finding E_1 in a measurement of energy can change with time, but the expectation value of energy doesn't change with time.
- d) both the probability of finding E_1 in a measurement of energy and the expectation value of energy can change with time.

4) For a quantum system with operator $\hat{\mathcal{O}}$ associated with some observable \mathcal{O} , we can say that $\hat{\mathcal{O}} \Psi\rangle$ is
a) the state $ \Psi\rangle$ after a measurement of \mathcal{O} .
b) proportional to the change in the state $ \Psi\rangle$ under the infinitesimal physical transformation associated with $\hat{\mathcal{O}}$.
c) always just equal to the state $ \Psi\rangle$ again but multiplied by a phase.
c) always just equal to the state $ \Psi\rangle$ again but multiplied by a phase. d) the expectation value of \mathcal{O} in the state $ \Psi\rangle$. Thus, is (Ψ) that we generally
5) If $[\hat{\mathcal{O}}, H] = 0$ for an operator $\hat{\mathcal{O}}$ in a system with time-independent Hamiltonian H , which of the following is not necessarily true?
a) Every energy eigenstate has a definite value for the observable \mathcal{O} associated with $\hat{\mathcal{O}}$.
b) There is a basis of states for which both \mathcal{O} and H are represented by diagonal matrices.
c) For any state, the probabilities for various measurement outcomes of $\mathcal O$ do not change with time.
d) The operator $e^{ia\hat{\mathcal{O}}}$ is a unitary matrix representing a physical transformation that is a symmetry of the system. \checkmark
6) Physical transformations such as rotations are represented by unitary operators acting on the Hilbert space of a quantum system. Which of the following is not a property of unitary operators?
a) They are linear maps from the Hilbert space to itself.
b) They preserve the inner product between states: if $ A'\rangle = U A\rangle$ and $ B'\rangle = U B\rangle$, then $\langle A' B'\rangle = \langle A B\rangle$.
c) They have an orthogonal basis of eigenvectors with real eigenvalues. d) They map normalized states to normalized states
d) They map normalized states to normalized states.
are complex phases)
Answers
1 2 3 4 5 6
CBBABAC)