Physics 402 Quiz 1, Feb 5, 2020

Name/Student Number:

1) Which of the states below is physically equivalent to the (unnormalized) state $i|\uparrow\rangle-2|\downarrow\rangle$?
a) $i|\uparrow\rangle+2|\downarrow\rangle$
b) $\frac{1}{3}|\uparrow\rangle-\frac{2}{3} i|\downarrow\rangle$

d) $-i|\uparrow\rangle-2|\downarrow\rangle$
e) none of the above
2) For a quantum system with a two-dimensional Hilbert space, observables Z and X are represented by $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ in the basis of Z eigenstates. For this system, we can say that
a) There are no states with a definite value of either Z or X. neither have definite X
b) Certain states have a definite value for Z or X, but no states have a definite value for both Z and X.
c) Most states do not have a definite value for both Z and X but certain special states do.
d) All states have a definite value for both Z and X.
3) At time $t=0$, the state of a quantum system with a time-independent Hamiltonian is a linear combination of energy eigenstates with different energies:

$$
|\Psi(t=0)\rangle=\sqrt{\frac{1}{3}}\left|E_{1}\right\rangle+\sqrt{\frac{2}{3}}\left|E_{2}\right\rangle .
$$

'Energy conserved!
$\langle E\rangle$ and (1)
For this state,
a) he probability of finding E_{1} in a measurement of energy doesn't change with time, and the expectation value of energy doesn't change with time.
b) the probability of finding E_{1} in a measurement of energy doesn't change with time, but the expectation value of energy can change with time.
c) the probability of finding E_{1} in a measurement of energy can change with time, but the expectation value of energy doesn't change with time.
d) both the probability of finding E_{1} in a measurement of energy and the expectation value of energy can change with time.
4) For a quantum system with operator $\hat{\mathcal{O}}$ associated with some observable \mathcal{O}, we can say that $\hat{\mathcal{O}}|\Psi\rangle$ is
a) the state $|\Psi\rangle$ after a measurement of $\mathcal{O} . \times$ eiserstate of θ)
b) Proportional to the change in the state $|\Psi\rangle$ under the infinitesimal physical transformation associated with $\hat{\mathcal{O}}$.

$$
|\underline{I}\rangle \rightarrow(\mathbb{1}+i \varepsilon \hat{\theta})|\underline{\Psi}\rangle \text { so charge is }
$$

c) always just equal to the state $|\Psi\rangle$ again but multiplied by a phase.
d) the expectation value of \mathcal{O} in the state $|\Psi\rangle$.

$$
\rightarrow \Psi\rangle \text { this is }\langle\Psi| \theta|\underline{\Psi}\rangle{ }^{\theta} \text {, bat not generally }
$$

5) If $[\hat{\mathcal{O}}, H]=0$ for an operator $\hat{\mathcal{O}}$ in a system with time-independent Hamiltonian H, which of the following is not necessarily true?
(a) Every energy eigenstate has a definite value no for the obssarily :
b) There is a basis of states $\mathrm{f} q$ which both \mathcal{O} and H are represented by diagonal matrices.
c) For any state, the probabilities for various measurement outcomes of \mathcal{O} do not change with time. $\boldsymbol{\theta}$ is conserved
d) The operator $e^{i a \hat{O}}$ is a unitary matrix representing a physical transformation that is a symmetry of the system. transform associated w θ is a symanty
6) Physical transformations such as rotations are represented by unitary operators acting on the Hilbert space of a quantum system. Which of the following is not a property of unitary operators?
a) They are linear maps from the Hilbert space to itself.
b) They preserve the inner product between states: if $\left|A^{\prime}\right\rangle=U|A\rangle$ and $\left|B^{\prime}\right\rangle=U|B\rangle$, then $\left\langle A^{\prime} \mid B^{\prime}\right\rangle=\langle A \mid B\rangle$.
C) They have an orthogonal basis of eigenvectors with real eigenvalues..
d) They map normalized states to normalized states.
not Hermitian ops, but unitaries (eigenvalues are complex phases)

Answers
${ }^{1}{ }^{1}{ }^{2} \Omega{ }^{2} A{ }^{3} R{ }^{4} A{ }^{5} R$

