Problem Set 3

In this problem set, you will get some hands on experience seeing that a Hermitian operator can be associated with any infinitesimal unitary transformation. Going the other way, you will see that by starting from an infinitesimal transformation associated with a Hermitian operator, we can build up a family of unitary transformations by acting with this many times. The first question is a bit of prep for next class.

Problem 0 (hand in Tuesday, participation credit)

Next class, we're going talk more about symmetries and conservation laws in quantum mechanics. Take a few minutes to think about and jot down answers to the following questions:

What is meant by a symmetry in classical physics? Can you think of a way to define what would be meant by a symmetry in quantum mechanics?

Problem 1 (Webwork for Thursday)

a) To make sure you understand the definition of an operator being unitary, decide whether the operator represented by the following matrix is unitary or not:

$$
\begin{aligned}
\hat{\mathcal{O}}|\uparrow\rangle & =\cos (\alpha)|\uparrow\rangle+i \sin (\alpha)|\downarrow\rangle \\
\hat{\mathcal{O}}|\downarrow\rangle & =i \sin (\alpha)|\uparrow\rangle+\cos (\alpha)|\downarrow\rangle
\end{aligned}
$$

b) In class, we mentioned the family of unitary operators represented by matrices

$$
\begin{aligned}
& \hat{\mathcal{O}}|\uparrow\rangle=\cos (\alpha)|\uparrow\rangle-\sin (\alpha)|\downarrow\rangle \\
& \hat{\mathcal{O}}|\downarrow\rangle=\sin (\alpha)|\uparrow\rangle+\cos (\alpha)|\downarrow\rangle
\end{aligned}
$$

In order to get an idea of what physical transformation this corresponds to, write the result of applying this transformation to the state

$$
\begin{equation*}
\cos (\theta / 2)|\uparrow\rangle+\sin (\theta / 2)|\downarrow\rangle . \tag{1}
\end{equation*}
$$

The result can be expressed as

$$
\begin{equation*}
\cos \left(\theta^{\prime} / 2\right)|\uparrow\rangle+\sin \left(\theta^{\prime} / 2\right)|\downarrow\rangle . \tag{2}
\end{equation*}
$$

What is θ^{\prime} in terms of α and θ ? What physical transformation does this correspond to?
c) If we call this operator $\hat{T}(\alpha)$, and consider small α, we can write

$$
\begin{equation*}
\hat{T}(\theta)=\mathbf{1}+i \alpha \hat{\mathcal{A}}+\ldots \tag{3}
\end{equation*}
$$

Find the matrix representing the operator $\hat{\mathcal{A}}$ in the $|\uparrow\rangle,|\downarrow\rangle$ basis. We already did this in class; this is just a review. Is it Hermitian? Do you recognize the operator $\hat{\mathcal{A}}$?

Problem 2 (Webwork for Thursday)

In class, I mentioned that we can get a "big" physical transformation by acting with a small one many times. Let's see how that works. Suppose we have

$$
\begin{equation*}
\hat{T}(\epsilon)=\mathbf{1}+i \epsilon \hat{\mathcal{A}}+\ldots \tag{4}
\end{equation*}
$$

We want to consider the limit $\epsilon \rightarrow 0$ to define an infinitesimal transformation, but act with this a very large number of times in order to get something finite. A way to do this is to let $\epsilon=a / N$ and act N times, then take the limit $N \rightarrow \infty$. This gives:

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left(\mathbf{1}+i \frac{a}{N} \hat{\mathcal{A}}+\ldots\right)^{N}=\lim _{N \rightarrow \infty}\left(\mathbf{1}+\frac{i a \hat{\mathcal{A}}}{N}\right)^{N}=e^{i a \hat{\mathcal{A}}} \tag{5}
\end{equation*}
$$

Here, in the first step, we have discarded the terms at higher orders in $\epsilon=x / N$. We can check that if we kept them, the extra terms we would get vanish in the limit $N \rightarrow \infty$. In the second step, we have used the famous limit formula for the exponential. But what does the exponential of an operator mean? One way to define it is by a power series:

$$
\begin{equation*}
e^{\hat{\mathcal{O}}}=1+\hat{\mathcal{O}}+\frac{1}{2} \hat{\mathcal{O}}^{2}+\ldots \tag{6}
\end{equation*}
$$

Another way is to work in a basis where $\hat{\mathcal{O}}$ is diagonal. In this case, if

$$
\begin{equation*}
\hat{\mathcal{O}}=\sum_{n} \lambda_{n}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right| \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
e^{\hat{\mathcal{O}}}=\sum_{n} e^{\lambda_{n}}\left|\lambda_{n}\right\rangle\left\langle\lambda_{n}\right| \tag{8}
\end{equation*}
$$

Using one of these methods, calculate the matrix representation of

$$
\begin{equation*}
e^{i a X} \tag{9}
\end{equation*}
$$

in the $|\uparrow\rangle,|\downarrow\rangle$ basis, where X is an operator represented by

$$
\left(\begin{array}{ll}
0 & 1 \tag{10}\\
1 & 0
\end{array}\right)
$$

in this basis. If we write $e^{i a X}|\uparrow\rangle$ in the form

$$
\begin{equation*}
\cos (\theta / 2)|\uparrow\rangle+e^{i \phi} \sin (\theta / 2)|\downarrow\rangle \tag{11}
\end{equation*}
$$

what are θ and ϕ in terms of a ? Based on this, can you say what this transformation is using the sphere picture?

EXTRA 1 (not to be handed in)

If \hat{A} and \hat{B} are Hermitian operators, show that they commute if and only if there is a basis where they are both represented by a diagonal matrix. (Hint: you may want to start with the case where the eigenvalues of \hat{A} are distinct, and also work in a basis where the matrix for A is diagonal.

EXTRA 2 (not to be handed in)

Show that if $[\hat{O}, \hat{H}]=0$ in a system with a time-independent Hamiltonian \hat{H}, then for any state $|\Psi(t)\rangle$ satisfying the Schrödinger equation, all probabilities p_{n} for measuring the different eigenvalues of \mathcal{O} are unchanging in time. Since we already showed that \mathcal{O} having constant expectation values for all states implies $[\hat{O}, \hat{H}]=0$, this shows that \mathcal{O} having constant expectation values for all states implies that any state will also have constant probabilities for \mathcal{O}.

