Problem Set 2

Part 1 Do the Webwork problems 1, 2, 3 .
Part 2 Complete and hand in questions 1 and 2 of the worksheet from the Jan 16th class. Partial solutions for question 1 are posted on the course website.

Part 3 Calculate

$$
\begin{equation*}
\langle\psi| \hat{\mathcal{O}}^{2}|\psi\rangle-\langle\psi| \hat{\mathcal{O}}|\psi\rangle^{2} \tag{1}
\end{equation*}
$$

for a state $|\Psi\rangle$ and an operator $\hat{\mathcal{O}}$ associated with an observable \mathcal{O}. Express your answer in terms of the eigenvalues λ_{n} of \mathcal{O} and the probabilities P_{n} for measuring these values in the state $|\Psi\rangle$. Show that this is equal to the square of the uncertainty for the observable \mathcal{O} in the state $|\Psi\rangle$. Hint: it's simplest to work in the basis of eigenstates of \mathcal{O}. As a warm-up, calculate $\langle\psi| \hat{\mathcal{O}}|\psi\rangle$ and show that this is equal to the expectation value of \mathcal{O}.

Note: $\psi|\hat{\mathcal{O}}| \psi\rangle$ is the inner product between $|\psi\rangle$ and $\hat{\mathcal{O}}|\psi\rangle$.

