
Problem set 10

Question 1 (Webwork due Tuesday)

a) Suppose we have a quantum system with a three-dimensional Hilbert space described by
a Hamiltonian whose matrix representation in some basis is

E0

 3 4 5
4 7 1
5 1 6

 . (1)

Using the variational method and taking trial states to be the three basis states in the basis
we are using, what is the best upper bound that we obtain?

b) For a particle in a delta function potential V = Cδ(x) with C > 0, if we use a variational
wavefunction ψ(x) = A/(x2 + b2) (as in the example from the video), what is the best upper
bound that we can place on the ground state energy?

Question 2 (Hand in Thursday via Canvas) Consider the one-dimensional problem of a
particle of mass m moving in a potential V (x) = α|x|3.

a) Use dimensional analysis to determine the dependence of the ground state energy on α,
~, and m.

Use variational methods to put an upper bound on the numerical coefficient. Try to get the
best (lowest) result you can.

Hint: for this part, you can set ~ = α = m = 1 since you already know how these come
into the final answer. Another tip: in computing 〈ψ|p2|ψ〉, you can use that this is the inner
product of p|ψ〉 with itself (so you only have to work with the first derivative of your trial
wavefunction).

**There will be a prize for the best bound (you must report your trial wavefunction as well
as the result)**

Question 3: (Hand in Tuesday via Canvas, participation credit) This question is a warm-up
for our discussion of time-dependent perturbation theory next week. It is very similar to the
content of chapter 9.1 of Griffiths (maybe 10.1 in the new edition?). You can have a look
there if you get stuck. Consider a system with time-independent Hamiltonian H0, initially
in some state |Ψ(0)〉 at t = 0. At time t = 0, we add to the Hamiltonian a time-dependent
perturbation H ′(t).

a) Write down the Schrödinger equations that governs the future evolution of the state.
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b)Let |ψn〉 be the energy eigenstates of H0. Then we can write the state at t = 0 as

|Ψ(0)〉 =
∑
n

cn|ψn〉 (2)

Without the perturbation, the state will evolve as

|Ψ(t)〉 =
∑
n

cne
− iEnt

~ |ψn〉 (3)

With the perturbation, we can still expand the state at any time in terms of the eigenstates
of H0, but the time-dependence of the coefficients will be more complicated. Let’s write this
as

|Ψ(t)〉 =
∑
n

cn(t)e−
iEnt

~ |ψn〉 (4)

where now cn(t) are some unknown functions of time that we wish to determine (instead of
just constants). By plugging this expression into the Schrödinger equation from part a) and
taking the component of this equation corresponding to the basis element |ψm〉, show that

dcm
dt

= − i
~
∑
n

e
i
~ (Em−En)tH ′mn(t)cn(t) (5)

where
H ′mn(t) = 〈ψm|H ′(t)|ψn〉 . (6)

c) We’ll discuss the solution of an equation like this in class. We’ll work perturbatively in
H ′. As a warm-up, consider the following differential equation:

d

dt
c(t) = f(t)c(t) . (7)

Write the exact solution of this that gives c(t) in terms of c(0). Now expand the solution to
show the terms with 0 and 1 power of f(t).

d) Read through chapter 9.1 if you haven’t already.

EXTRA: Identical particles (you won’t be responsible for this, and I believe it
was covered in Physics 304, but I’d strongly recommend reading this as a review)
We have talked about how when describing multipart systems, a basis for the full Hilbert
space can be written in terms of bases {|n〉} and {|N〉} for the individual subsystems via
the tensor product construction, where we have one basis element |n〉 ⊗ |N〉 for each pair.

There is an important modification to this when our quantum system is a system with two
(or more) identical particles e.g. two electrons in a Helium atom. In this case, simply taking
the tensor product Hilbert space is not quite right, since swapping the two particles gives a
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state that is actually physically equivalent to the original state. So it would be overcounting
to include both |n1〉 ⊗ |n2〉 and |n2〉 ⊗ |n1〉 as distinct basis vectors for our Hilbert space.

An important result of quantum field theory (which is the most complete way to describe
systems of multiple particles) is that for two identical particles with integer spins (e.g. alpha
particles), the appropriate basis for the Hilbert space is the set of symmetrized states

1√
2

(|n1〉 ⊗ |n2〉+ |n2〉 ⊗ |n1〉) .

These states map to themselves under the exchange of the two particles; particles whose
states have this property are called BOSONS. For multiparticle states, the basis elements
are combinations that are invariant under the exchange of any two of the particles.

For identical particles with half-integer spins 1/2, 3/2, . . . the appropriate basis of the Hilbert
space it the set of antisymmetrized states

1√
2

(|n1〉 ⊗ |n2〉 − |n2〉 ⊗ |n1〉) .

These states transform as |Ψ〉 → −|Ψ〉 under the exchange of the two particles; particles
whose states have this property are called FERMIONS. In this case, there are no basis
elements with n1 = n2 since the expression above vanishes here: this leads to the Pauli
exclusion principle, that identical particles with half-integer spins cannot be in the same
state. You can read more about this in Griffiths 5.1.1.

These constraints on the symmetry properties of states have dynamical consequences for the
energies and degeneracies of quantum systems, as you will see in the following exercise:

Consider two non-interacting particles in a 1D harmonic oscillator potential. Determine
the lowest three energy levels and the corresponding degeneracies if the particles are a)
identical bosons b) identical fermions. Write the states explicitly, remembering that the
states must be symmetric/antisymmetic under exchange of the particles for bosons and
fermions respectively.
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