
Multipart quantum systems

It is often the case that a quantum mechanical system that we are interested in has various
independent degrees of freedom i.e. separate parts that each have their own state. This is
the case in a system with many particles, but also in systems where a single particle has
both x motion and y motion, or x, y, z motion and spin.

To understand the quantum description of multipart systems, consider an example where
we have two particles in one dimension. Classically, each would have a definite value for
position. We can describe these by introducing variables x1 and x2 describing the locations
of the two particles. But in the quantum system, states with definite values for x1 and x2
are very special states - they are eigenstates for the two position operators X̂1 and X̂2. If
we label these states as |x1x2〉, then the general state will be a linear combination of these.
We need a function ψ(x1, x2) to describe the coefficients in such a linear combination, so we
see that the wavefunction for the two-part system is a function of two variables rather than
just two functions of one variable.

The key point here is that the basis for the combined system is in one-to-one correspondence
with pairs (|x1〉, |x2〉) of basis elements, one from each part. Mathematically, a vector space
with basis constructed in this way is known as the tensor product or direct product of the
the two smaller vector spaces.1.

In a case where both parts are represented by finite dimensional Hilbert spaces, if we have d1
basis elements |n〉 for the first part and d2 basis elements |N〉 for the second part, there are
d1d2 basis elements for the tensor product Hilbert space. These are labeled either as |nN〉
or |n〉 ⊗ |N〉, where the ⊗ in the latter notation indicates that there is a bilinear operation
that takes one vector from the first Hilbert space and one vector from the second Hilbert
space and gives us a vector in the larger Hilbert space. We can define this operation on any
two vectors |ψ〉 =

∑
n cn|n〉 and |Ψ〉 =

∑
cN |N〉 by

|ψ〉 ⊗ |Ψ〉 = (
∑
n

cn|n〉)⊗ (
∑

cN |N〉) ≡
∑
nN

cnCN |n〉 ⊗ |N〉 . (1)

Physically, this tensor product state represents a state where the first subsystem is definitely
in the state |ψ〉 while the second part is definitely in the state |Ψ〉. A very important point
is that only very special states can be written in this way. For example, in a system with
two spins, the state

1√
2

(| ↑〉 ⊗ | ↑〉+ | ↓〉 ⊗ | ↓〉) (2)

cannot be written as a tensor product; in this case we say that the first subsystem is entangled
with the second subsystem.

1This should be distinguished with a direct sum, in which the set of basis elements for the full space is
taken to be the union of basis elements for the subspaces
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We emphasize that the two vector spaces need not have the same dimension. For example,
when describing a particle with position degrees of freedom and also spin degrees of freedom,
we would have basis elements |xsz〉 ≡ |x〉 ⊗ |sz〉 where the first part is infinite dimensional
and the second part is finite dimensional. For a system like this, the general state would be
a superposition ∫

dx(ψ↑(x)|x ↑〉+ ψ↓(x)|x ↓〉) (3)

so we would have an “up” wavefunction and a “down” wavefunction to describe the state.

For a multipart system, given any operator acting on one of the individual Hilbert spaces,
we can promote it to an operator acting on the full Hilbert space simply by declaring that
it has no effect (i.e. that it acts as the identity operator) on the remaining parts. In our
example with two finite-dimensional systems, if Ô1 is an operator acting on the first part as

Ô1|n〉 =
∑
m

O1
mn|m〉 , (4)

we can promote it to an operator acting on the whole system as

Ô1|nN〉 ≡
∑
m

O1
mn|mN〉 . (5)

Sometimes the full operator is denoted by Ô1⊗11 to emphasize that it is acting as the identity
operator on the second part.

It is easy to check from the definition that operators defined in this way but acting on the
different parts automatically commute with one another. Thus, we can write the product
of operators acting on the different parts as O1O2 or as O2O1; in the ⊗ notation, both of
these are equivalent to O1 ⊗ O2. As an example, consider the operator x̂Ŝx in our system
describing the position and the spin of a particle. This is the product of the operator obtained
by promoting x̂ to an operator on the full system with the operator obtained by promoting
Ŝx to an operator acting on the full system. Acting on an (x, Sz) basis state |x ↓〉, this gives

x̂Ŝx|x ↓〉 =
~
2
x|x ↑〉 . (6)

Just as the states of the combined system cannot usually be written in the form |Ψ1〉⊗ |Ψ2〉,
general operators of the combined system cannot usually be written as O1 ⊗O2. Typically,
the best we can do is write general states/operators as linear combinations of things that
can be written in this way.
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