Solving the Schrodinger Equation

A useful consequence of this is that to understand time-evolution in quantum mechanics, it
is very useful to find the eigenstates of the energy operator. If |E,) represent these energy
eigenstates, we have by definition

I:I’En> = En’En> (1>
so the time evolution operator acts as'
T(0)|Ba) = e 7| Ey) = 75| B,) (2)

We see that the state of the system after time ¢ is physically equivalent to the original state,
since it is just the original state multiplied by a phase factor. In particular, the probabilities
for any possible measurements will be the same as for the initial state. For this reason, we
call the energy eigenstates stationary states.

Using the linearity property of time evolution in quantum mechanics, it is now simple to
understand the evolution of any state. We first take the state at t = 0 and express it as a
combination of energy eigenstates:

(U(t=0)) =) calEn) Cn = (En|¥(t = 0)) . (3)

By linearity, we can immediately say that the state at a later time is

() = TOI(E=0) =3 eTO|E) =Y cpe i

Thus, the problem of understanding time evolution is reduced to the problem of finding the
energy eigenstates, i.e. solving (1). For this reason, (1) is often called the time-independent
Schrodinger equation.

Ey) - (4)

Translations and momentum

Another important example of an observable being related to some physical transformation
is the connection between translations and momentum in quantum systems. Let 7 (a) be
the operator that translates a system by an amount a in some direction. Then we can write
the infinitesimal version of this transformation as

Tla)=1—iazPt.... (5)

By our general discussion above, the Hermitian operator P will correspond to a physical
quantity that is conserved for any system where these translations are a symmetry. From

'We are using here that if a state is an eigenstate of some operator, it will be an eigenstate of any power
of that operator and more generally any (analytic) function of that operator. Alternatively, we can just
check that our final result satisfies the Schrodinger equation.



classical mechanics, we know that this is the defining property of momentum, so we can say
that P is the quantum operator associated with momentum. We have again included the
constant A into the definition above in order that P will have the usual units of momentum.

For a system with a single spatial direction labeled by coordinate z, we can understand
better the properties of the momentum operator by noting that if a state |¥) is defined by
wavefunction t(z) the the state 7 (a)|¥) must have wavefunction ¢(z — a) i.e. the same
function translated in the x direction by an amount a. This is implied by the definition of

~

T (a). Mathematically, this gives
(@ T ()W) = ¢z —a) . (6)

This equation is true for all a, so it must be true for very small a where (5) holds. in this
case, we can expand both sides in a Taylor series in a, and all the terms must be equal.
Inserting (5) into (6) and equating the terms with one power of a, we find

1. ,
—iar (2| PIW) = —av/(z) (7

or

(#lBI) = ~ih-y(z) ®)

We see that acting with the momentum operator on a state |¥) is equivalent to acting with
—id/dx on the wavefunction for that state.



