
Energy and time evolution

Perhaps the most important physical transformation in quantum mechanics is the operation
of time evolution that takes us from the state of the system at some time t0 to the state of
the system at some later time t0 + δt. This is a unitary operator that we will call

T̂ (δt, t0) . (1)

In many cases, we have a system with time-translation invariance: this means that the
evolution operator is the same for any time t0, so T̂ is only a function of δt.

As above, we can think of an infinitesimal version of this operator, where δt is taken to be
very small. In this case, we can write

T̂ (δt, t0) = 1− iδtĤ
~

+ . . . (2)

where Ĥ is a Hermitian operator that we call the Hamiltonian; in general, it can depend
on t0. We will see below that in the time-translation invariant case where it does not, the
physical quantity associated with Ĥ is always conserved, this conserved quantity is what we
call energy. The constant ~ introduced above is included so that Ĥ will have the ordinary
units of energy instead of inverse time.

The result (2) gives the infinitesimal form of the time evolution operator. Applying this to
a state, we learn that

|Ψ(t0 + δt)〉 = (1− iδtĤ
~

+ . . . )|Ψ(t0)〉 (3)

Rearranging this, we get

1

δt
(|Ψ(t0 + δt)− |Ψ(t0)〉) = −iĤ

~
|Ψ(t0)〉+ . . . , (4)

where the dots indicate terms of order δt and higher. Finally, in the limit δt → 0, the left
side becomes the derivative of the state, so we obtain a differential equation for the time
evolution of a state

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉 (5)

This is known as the Schrödinger equation. In this general form, it applies to any quantum
system.

Conserved quantities in quantum mechanics

Now that we have some understanding of time evolution, we can discuss what is meant by
a conserved quantity in quantum mechanics. Since physical observables don’t even have
definite values for most states, it is less obvious what we might mean by something being
conserved. However, we might consider the following possibilities
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• A physical observable O is conserved if and only if its expectation value is unchanging
in time for all states of the system.

• A physical observable O is conserved if and only if for any state of the system, the
probabilities of finding the various eigenvalues λn are all unchanging in time.

The latter statement clearly implies the former and appears to be a stronger condition, but
we will see that they are equivalent (this is an exercise on the next homework; the proof will
appear on the solutions).

Furthermore both are equivalent to the statement that the operator Ô associated with O
commutes with the Hamiltonian operator, i.e.

[Ô, Ĥ] = 0 . (6)

We are assuming here that O itself is some fixed physical quantity with no inherent time
dependence (i.e, we assume dÔ/dt = 0).

Symmetries in quantum mechanics

A symmetry in quantum mechanics is a physical transformation represented by some unitary
operator T̂ with the property that if |Ψ(t)〉 is any solution to the Schrödinger equation,
then T̂ |Ψ(t)〉 is a solution to the Schrödinger equation. This definition is in line with our
intuition that symmetries acting on a system give us configurations “equivalent” to the
original configuration.

To understand which physical transformations have this property, consider any |Ψ(t)〉 satis-
fying the Schrödinger equation (5). Then T̂ |Ψ(t)〉 will also satisfy the Schrödinger equation
for some specific operator T̂ if and only if

i~
d

dt
(T̂ |Ψ〉) = Ĥ(T̂ |Ψ〉)

⇐⇒ i~T̂ d

dt
|Ψ〉 = ĤT̂ |Ψ〉

⇐⇒ T̂ Ĥ|Ψ〉 = ĤT̂ |Ψ〉
⇐⇒ [T̂ , Ĥ]|Ψ〉 = 0 . (7)

This will be true for any possible state |Ψ〉 if and only if

[T̂ , Ĥ] = 0 . (8)

Thus, a physical transformation is a symmetry if and only if the corresponding unitary
operator commutes with the Hamiltonian.
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If we have a continuous family of symmetries such as rotations around an axis or translations,
the operators T̂ (ε) representing infinitesimal transformations must also obey the relation (8).
From the expression

T̂ (ε) = 1− iεÔ + . . . (9)

we see that this will be true if and only if the Hermitian operator Ô associated with this
transformation also commutes with the Hamiltonian. Thus, the condition that a Hermitian
operator gives an infinitesimal transformation that is a symmetry is

[Ô, Ĥ] = 0 . (10)

Symmetries ↔ conservation laws

We have already seen that any Hermitian operator can be associated with a physical ob-
servable and also a physical transformation. We now see that the condition (6) that the
physical observable associated with Ô is conserved is the same as the condition (10) that
the physical transformation associated with Ô is a symmetry. This establishes the relation
between symmetries and conservation laws in quantum mechanics.

Time translations and energy

The most universal example of a operator that commutes with the Hamiltonian is the Hamil-
tonian itself. Thus, for any quantum mechanical system with time-translation invariance (i.e.
for which a single time-independent operator governs the time evolution at all times), the
observable associated with the Hamiltonian operator must be conserved. From our experi-
ence with classical mechanics, we know that the conserved quantity associated with time-
translation invariance is the total energy of the system. Thus, the Hamiltonian operator
appearing in the Schrödinger equation is the energy operator.
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