
Expectation values and Uncertainty

If we make a large number of measurements of the same observable on equivalent states, we
will obtain a distribution of possible results governed by these probabilities. The average of
these results, known as the expectation value of the observable is denoted by Ō or 〈O〉 and
equal to

Ō =
∑
n

pnλn =
∑
n

λn|〈λn|Ψ〉|2 (1)

We may also be interested in how spread out the distribution of results is. A useful measure
of this is to compute the standard deviation of the distribution, defined by taking the average
value of (O − Ō)2 and then taking the square root. In quantum mechanics, we call this the
uncertainty ∆O of the observable O in the state |Ψ〉. It is given explicitly by

∆O = (
∑
n

pn(λn − Ō)2)
1
2 (2)

where we first calculate Ō) using (1).

Hermitian operators for observables

Given any observable O, we can define a Hermitian operator Ô associated with it, by defining

Ô|λn〉 = λn|λn〉 (3)

for the eigenstates of O and using linearity to define the action on any other state. By
our definition, the eigenvectors of Ô are orthonormal and the eigenvalues are real, so the
operator is Hermitian.

We will see below what the physical interpretation of the state Ô|Ψ〉 is; for now we point
out the useful result that the expectation value of O defined above can be calculated for the
state Ψ as

Ō = 〈Ψ|Ô|Ψ〉 . (4)

This can be checked using the definition (3) to reproduce the result (3).

Commuting vs noncommuting observables

For two different observables O1 and O2, it is typically the case that the eigenvectors of one
are not eigenvectors of the other. Physically, this means that a state with a definite value
for O1 will not have a definite value for O2 and vice versa.
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On the other hand, if the two observables do share a common basis of eigenstates, it is
possible to know the value of both observables at the same time.

It is not hard to show that two Hermitian operators will share a common basis of eigenstates
if and only if the corresponding operators commute with each other, i.e. that in acting with
the two operators in succession on any state, we get the same result regardless of the order.
This will be true if and only if the commutator [Ô1, Ô2] ≡ Ô1Ô2 − Ô2, Ô1 is equal to zero.

In the case where the operators share a common basis, both O1 and O2 will have matrix
representations that are diagonal in this basis, so it is clear that the corresponding matrices
also commute with each other.

The fact that some observables cannot have definite values simultaneously leads directly to
the idea of an uncertainty principle in quantum mechanics. Starting from the definition (2)
of uncertainty and making use of the Cauchy-Schwarz inequality (see Griffiths for details) it
is possible to prove the generalized uncertainty principle

∆O1∆O2 ≥
1

2
|〈i[O1,O2]〉| . (5)

We will see that this leads to the more familiar Heisenberg Uncertainty Principle when
applied to the position and momentum operators.
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