
Expectation values and Uncertainty

If we make a large number of measurements of the same observable on equivalent states, we
will obtain a distribution of possible results governed by these probabilities. The average of
these results, known as the expectation value of the observable is denoted by Ō or 〈O〉 and
equal to

Ō =
∑
n

pnλn =
∑
n

λn|〈λn|Ψ〉|2 (1)

We didn’t talk about this yet in class, but I’m including it here since it fits with
expectation values:

We may also be interested in how spread out the distribution of results is. A useful measure
of this is to compute the standard deviation of the distribution, defined by taking the average
value of (O − Ō)2 and then taking the square root. In quantum mechanics, we call this the
uncertainty ∆O of the observable O in the state |Ψ〉. It is given explicitly by

∆O = (
∑
n

pn(λn − Ō)2)
1
2

= (
∑
n

pnλ
2
n − (

∑
n

pnλn)2)
1
2 . (2)

0.1 Operators

Given a Hilbert space, a linear operator or simply operator is defined as a linear map from
the vector space to itself, i.e. a map

|v〉 → Ô|v〉 (3)

satisfying
Ô(z1|v1〉+ z2|v2〉) = z1Ô|v1〉+ z2Ô|v2〉 . (4)

The set of operators has the mathematical structure of an algebra. This means that they
form a complex vector space (i.e. we can add operators and multiply them by a constant),
with the additional structure of being able to multiply operators. This multiplication is
defined by

(Ô1Ô2)|v〉 = Ô1(Ô2|v〉) . (5)

The algebra of operators includes an “identity” element, the operator 1 that takes every
vector to itself.
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Matrix representation of an operator

By the linearity property, the action of an operator is completely specified by its action on
any basis of vectors: if |v〉 =

∑
cn|en〉 then Ô|v〉 =

∑
cnÔ|en〉.

Acting on any basis vector, the operator must give some linear combination of basis vectors.
We can express this as

Ô|en〉 ≡
∑
m

Omn|em〉 , (6)

where
Omn ≡ 〈em|O|en〉 . (7)

are called the matrix elements of the operator Ô.

The matrix Omn gives a representation of the operator Ô in a particular basis. If a vector
|v〉 is represented in the same basis by coefficients cn, the vector O|v〉 is represented by
coefficients c′m given by1

c′m =
∑
n

Omncn ; (8)

That is, we write the coefficients cn as a column vector and multiply by the matrix Omn to
get the new coefficients.

It often helps to think of these linear operators as performing some type of geometrical
transformation on the vector space. We can have various qualitatively different types in-
cluding operators that stretch things in various ways, operators that preserve lengths similar
to rotations, or operators that project onto some lower dimensional subspace.

Eigenvectors and eigenvalues

The action of an operator may be particularly simple on certain vectors. We say that |v〉 is
an eigenvector of Ô with eigenvalue λ if

Ô|v〉 = λ|v〉 . (9)

Sometimes there can be different eigenvectors with the same eigenvalue. In this case, any
linear combination of these eigenvectors is an eigenvector with this eigenvalue.

For some operators, it is possible to choose a basis of vectors which are all eigenvectors of
Ô. In this case, Ô is represented simply as a diagonal matrix.

1To see this, we note that c′m = 〈em|O|v〉 = 〈em|O(
∑

n cn|en〉) =
∑

nOmncn.
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Hermitian operators

A particular example of this type with special physical relevance in quantum mechanics is the
Hermitian operator. For these operators, it is possible to choose the basis of eigenvectors to
be orthonormal, and all of the eigenvalues are real. We can visualize the action of a Hermitian
operator as stretching the space along each eigenvector direction by a multiplicative factor
given by the eigenvalue.

For a Hermitian operator, if we denote the eigenvalues by λn and the eigenvectors by |λn〉,
the matrix elements in this basis are simply

Omn = λmδmn , (10)

i.e. a diagonal matrix with the eigenvalues along the diagonal.

In another basis, a Hermitian operator will generally not be diagonal. But we can recognize it
as Hermitian since in an orthonormal basis, the adjoint of the corresponding matrix (defined
as the complex conjugate of the transpose) must be equal to the matrix itself:

Onm = O∗mn . (11)

We can express this property in a basis independent language: for an operator Ô, we define
the adjoint operator Ô† to be the operator satisfying

〈χ|Ô†|ψ〉 = 〈ψ|Ô|χ〉∗ . (12)

With this definition, a Hermitian operator is an operator satisfying Ô† = Ô. A basic theorem
in linear algebra states that this is true if and only if there exists an orthonormal basis of
eigenvectors with real eigenvalues.

Properties of the Adjoint

From the definition of the adjoint, we can immediately see the following properties that will
be useful below

• (zÔ)† = z∗Ô†

• If |w〉 = Ô|v〉, then 〈w|u〉 = 〈v|Ô†|u〉

• (Ô1Ô2)
† = Ô†2Ô

†
1

• If Ô|v〉 = λ|v〉, then 〈v|O†|w〉 = λ∗〈v|w〉

From the third property here, we see that the product of two Hermitian operators is generally
not Hermitian. However, it follows from the properties of the adjoint that the combination
i[Â, B̂] is Hermitian if Â and B̂ are Hermitian.
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