
1 Basics of Quantum mechanics

Quantum mechanics is a mathematical framework that is believed to underlie all physics
in our universe. In these notes, we review the fundamentals of this framework. Each time
a new mathematical concept is used, we provide a review of that concept in an indented
section just before we need it. Feel free to skip ahead to the physics parts and go back and
read all the definitions when you need them. We begin with the definition of a Hilbert space.

Hilbert space

Complex vector spaces

We start with the idea of a complex vector space. This is a space of objects
that we call vectors, such that any complex number times a vector gives another
vector and any sum of vectors gives another vector. In quantum mechanics, we
will use the notation |v〉 (called a “ket”) to denote a vector. All the properties
familiar from real vector spaces still hold in the complex case.1

Inner product

For the vector spaces in quantum mechanics, we have an additional structure
called an inner product which generalizes the dot product for real vector spaces.
The inner product is a map that takes a pair of vectors to a complex number
that we denote by

(|v1〉, |v2〉)→ 〈v1|v2〉 (1)

The inner product obeys the following properties:

• 〈v2|v1〉 = 〈v1|v2〉∗

• If |w〉 = z1|v1〉+ z2|v2〉 then 〈v3|w〉 = z1〈v3|v1〉+ z2〈v3|v2〉
• If |w〉 = z1|v1〉+ z2|v2〉 then 〈w|v3〉 = z∗1〈v1|v3〉+ z∗2〈v2|v3〉
• 〈v|v〉 ≥ 0 with equality only for |v〉 = 0.

Here, the third property follows from the first two. The last property allows us
to associated a real “length” to a vector and also gives us a measure of distance
between vectors, defined as the length of the difference vector.

1Specifically, we have (|v1〉+ |v2〉) + |v3〉 = |v1〉+ (|v2〉+ |v3〉) , |v1〉+ |v2〉 = |v2〉+ |v1〉, there exists 0 such
that |v〉+ 0 = |v〉 for all |v〉, −|v〉+ |v〉 = 0, z1(z2|v〉) = (z1z2)|v〉, 1|v〉 = |v〉, z(|v1〉+ |v2〉) = z|v1〉+ z|v2〉,
(z1 + z2)|v〉 = z1|v〉+ z2|v〉.
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Dual vectors

We can also give meaning to the object 〈v|, (known as a ”bra”). It represents a
linear map from the vector space to complex numbers, known mathematically as
a dual vector. The map is defined by

|w〉 → 〈v|w〉 . (2)

Any linear map from our vector space to complex numbers can be represented in
this way for some choice of state |w〉.2

Hilbert space

Finally we can define a complex Hilbert space: it is a complex vector space with
inner product satisfying one more technical criterion known as completeness. This
is the statement that any sequence of vectors whose elements become arbitrarily
close to one another as the sequence progresses (a Cauchy sequence) must con-
verge to a vector in the space; this is automatically satisfied for finite dimensional
examples.

1.1 States

The physical configuration of a system at some time is known as a state. In quantum
mechanics, a state is represented mathematically as a nonzero vector in some Hilbert
space . We will often denote this as |Ψ〉. Two vectors represent the same physical state if
they are related to each other through multiplication by a complex number.3 Since the zero
vector is not allowed, any state vector is equivalent to a state with 〈Ψ|Ψ〉 = 1, so we will
often assume this condition and refer to such states as normalized. There is still freedom to
multiply by a complex number eiφ with norm 1 (known as a phase) without changing the
physical configurations.

Generally, this state will evolve with time, so we can write |Ψ(t)〉 to describe the state vector
at time t.

Orthonormal bases, finite and infinite dimensional spaces

It is often convenient (and will be physically relevant) to define a basis for a
vector space. We define an orthonormal basis to be a set of vectors |en〉 which

2Proof: for an orthonormal basis |ei〉, let zi be the result of applying the map to |ei〉. The map on any
other state can be determined from these numbers using the linearity relation. We can now check that the
map is equivalent to taking the inner product with the state

∑
i z

∗
i |ei〉.

3Mathematically, the set of nonzero vectors in an N -dimensional complex vector space CN together with
this equivalence relation defines a space called complex projective space CPN−1.
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span the space (i.e. any vector can be expressed as a linear combination of them)
and such that

〈em|en〉 = δmn . (3)

Here δmn vanishes for m not equal to n and is 1 otherwise. Given any vector |v〉,
we can then write

|v〉 =
∑
n

cn|en〉 (4)

where
cn = 〈en|v〉 . (5)

We say that the set of coefficients (c1, c2, c3, . . . ). represent the vector |v〉 in
the basis |en〉. There are an infinite number of possible bases, and the set of
coefficients representing a given vector will generally be different for each choice.
Thus, it is important to keep in mind that the list (c1, c2, c3, . . . ) has no intrinsic
meaning unless we specify which basis we are talking about.

Dimension of Hilbert space

The number of basis elements can be finite or infinite. When the number is
finite, every orthonormal basis for the vector space will have the same number of
vectors. We call this the dimension of the Hilbert space.

1.2 Observables

In quantum mechanics, physical quantities such as energy, position, or angular momentum
(we will generally call them observables) do not generally have definite values in a given
state. However, a basic assumption is that there exists for each observable O some orthonor-
mal basis of states |λn〉, each of which has a definite value λn for O. We call these the
eigenvectors (or eigenstates) and eigenvalues associated with O. In some cases, two or more
of the eigenvalues can be the same; in this case, the whole space of states spanned by the
corresponding eigenvectors is understood to have this same definite value for O, and we have
some freedom in choosing which orthonormal basis of states to choose.

What about states which are not eigenstates? Since the eigenstates form a basis, we can
write any state |Ψ〉 as a linear combination of these basis elements,

|Ψ〉 =
∑
n

cn|λn〉 . (6)

For such a state, we say that |Ψ〉 does not have a definite value for O; in a measurement
of O, we might find any of the values λn, with probability |cn|2, and the state becomes the
corresponding eigenstate after the measurement. Here, we are assuming that the state is
normalized; otherwise |cn|2 gives the relative probability.
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To see that the probabilities add up to 1 in the normalized case, we note that by the
orthonormality of the basis,

1 = 〈Ψ|Ψ〉 =
∑
n

∑
m

c∗ncm〈λn|λm〉 =
∑
n

|cn|2 = 1 . (7)

We can give a more direct formula for the probability by noting that

cn = 〈λn|Ψ〉 . (8)

which follows using the orthonormality of the basis by taking the inner product of |λn〉 with
the two sides of (6). Thus if we measure O in the state |Ψ〉, the probability that we will
obtain the result λn is simply

pn = |〈λn|Ψ〉|2 . (9)
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