
1 Mathematical preliminaries

The mathematical language of quantum mechanics is that of vector spaces and linear algebra.
In this preliminary section, we will collect the various definitions and mathematical results
that we will use below.

1.1 Hilbert space

Complex vector spaces

We start with the idea of a complex vector space. This is a space of objects that we call
vectors, such that any complex number times a vector gives another vector and any sum of
vectors gives another vector. In quantum mechanics, we will use the notation |v⟩ (called a
“ket”) to denote a vector. All the properties familiar from real vector spaces still hold in the
complex case.1

Inner product

For the vector spaces in quantum mechanics, we have an additional structure called an inner
product which generalizes the dot product for real vector spaces. The inner product is a map
that takes a pair of vectors to a complex number that we denote by

(|v1⟩, |v2⟩)→ ⟨v1|v2⟩ (1)

The inner product obeys the following properties:

• ⟨v2|v1⟩ = ⟨v1|v2⟩∗

• If |w⟩ = z1|v1⟩+ z2|v2⟩ then ⟨v3|w⟩ = z1⟨v3|v1⟩+ z2⟨v3|v2⟩

• If |w⟩ = z1|v1⟩+ z2|v2⟩ then ⟨w|v3⟩ = z∗1⟨v1|v3⟩+ z∗2⟨v2|v3⟩

• ⟨v|v⟩ ≥ 0 with equality only for |v⟩ = 0.

Here, the third property follows from the first two. The last property allows us to associated
a real “length” to a vector and also gives us a measure of distance between vectors, defined
as the length of the difference vector.

1Specifically, we have (|v1⟩+ |v2⟩)+ |v3⟩ = |v1⟩+(|v2⟩+ |v3⟩) , |v1⟩+ |v2⟩ = |v2⟩+ |v1⟩, there exists 0 such
that |v⟩+ 0 = |v⟩ for all |v⟩, −|v⟩+ |v⟩ = 0, z1(z2|v⟩) = (z1z2)|v⟩, 1|v⟩ = |v⟩, z(|v1⟩+ |v2⟩) = z|v1⟩+ z|v2⟩,
(z1 + z2)|v⟩ = z1|v⟩+ z2|v⟩.
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Dual vectors

We can also give meaning to the object ⟨v|, (known as a ”bra”). It represents a linear map
from the vector space to complex numbers, known mathematically as a dual vector. The
map is defined by

|w⟩ → ⟨v|w⟩ . (2)

Hilbert space

Finally we can define a complex Hilbert space: it is a complex vector space with inner product
satisfying one more technical criterion known as completeness. This is the statement that any
sequence of vectors whose elements become arbitrarily close to one another as the sequence
progresses (a Cauchy sequence) must converge to a vector in the space; this is automatically
satisfied for finite dimensional examples.

1.2 Orthonormal bases, finite and infinite dimensional spaces

It is often convenient (and will be physically relevant) to define a basis for a vector space.
We define an orthonormal basis to be a set of vectors |en⟩ which span the space (i.e. any
vector can be expressed as a linear combination of them) and such that

⟨em|en⟩ = δmn . (3)

Here δmn vanishes for m not equal to n and is 1 otherwise. Given any vector |v⟩, we can
then write

|v⟩ =
∑
n

cn|en⟩ (4)

where
cn = ⟨en|v⟩ . (5)

We say that the set of coefficients (c1, c2, c3, . . . ). represent the vector |v⟩ in the basis |en⟩.
There are an infinite number of possible bases, and the set of coefficients representing a given
vector will generally be different for each choice. Thus, it is important to keep in mind that
the list (c1, c2, c3, . . . ) has no intrinsic meaning unless we specify which basis we are talking
about.

Dimension of Hilbert space

The number of basis elements can be finite or infinite. When the number is finite, every
orthonormal basis for the vector space will have the same number of vectors. We call this
the dimension of the Hilbert space.
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The infinite dimensional case

In the infinite dimensional case, we will typically be able to define a set of basis vectors |en⟩
that is “countable,” i.e. labeled by positive integers. However, it is sometimes convenient to
define basis vectors labeled by real numbers. In this case, the statement of orthonormality
becomes

⟨x|y⟩ = δ(x− y) (6)

where the Dirac delta function δ(x) (mathematically not actually a function but a distribu-
tion) is defined to vanish for x ̸= 0 and satisfy2∫

dxδ(x) = 1 . (7)

This implies that for any function f ,∫
dxδ(x− a)f(x) = f(a) . (8)

In this continuous case, we can represent a general vector as

|v⟩ =
∫
dxv(x)|x⟩ (9)

where the function v(x) takes the place of the coefficients ci as the basis-dependent repre-
sentation of the vector.

1.3 Operators

Given a Hilbert space, a linear operator or simply operator is defined as a map

|v⟩ → Ô|v⟩ (10)

satisfying
Ô(z1|v1⟩+ z2|v2⟩) = z1Ô|v1⟩+ z2Ô|v2⟩ . (11)

The set of operators has the mathematical structure of an algebra. This means that they
form a complex vector space (i.e. we can add operators and multiply them by a constant),
with the additional structure of being able to multiply operators. This multiplication is
defined by

(Ô1Ô2)|v⟩ = Ô1(Ô2|v⟩) . (12)

The algebra of operators includes an “identity” element, the operator 1 that takes every
vector to itself. This makes it a unital algebra.

2Here, x could be a single coordinate on the real line, could also represent coordinates in a higher-
dimensional space, or on some other geometry.
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Matrix representation of an operator

By the linearity property, the action of an operator is completely specified by its action on
any basis of vectors: if |v⟩ =

∑
cn|en⟩ then Ô|v⟩ =

∑
cnÔ|en⟩.

Acting on any basis vector, the operator must give some linear combination of basis vectors.
We can express this as

Ô|en⟩ ≡
∑
m

Omn|em⟩ , (13)

where
Omn ≡ ⟨em|O|en⟩ . (14)

are called the matrix elements of the operator Ô.

The matrix Omn gives a representation of the operator Ô in a particular basis. If a vector
|v⟩ is represented in the same basis by coefficients cn, the vector O|v⟩ is represented by
coefficients c′m given by3

c′m =
∑
n

Omncn ; (15)

That is, we write the coefficients cn as a column vector and multiply by the matrix Omn to
get the new coefficients.

It often helps to think of these linear operators as performing some type of geometrical
transformation on the vector space. We can have various qualitatively different types in-
cluding operators that stretch things in various ways, operators that preserve lengths similar
to rotations, or operators that project onto some lower dimensional subspace.

Eigenvectors and eigenvalues

The action of an operator may be particularly simple on certain vectors. We say that v⟩ is
an eigenvector of Ô with eigenvalue λ if

Ô|v⟩ = λ|v⟩ . (16)

Sometimes there can be different eigenvectors with the same eigenvalue. In this case, any
linear combination of these eigenvectors is an eigenvector with this eigenvalue.

For some operators, it is possible to choose a basis of vectors which are all eigenvectors of
Ô. In this case, Ô is represented simply as a diagonal matrix.

3To see this, we note that c′m = ⟨em|O|v⟩ = ⟨em|O(
∑

n cn|en⟩) =
∑

nOmncn.
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Hermitian operators

A particular example of this type with special physical relevance in quantum mechanics is the
Hermitian operator. For these operators, it is possible to choose the basis of eigenvectors to
be orthonormal, and all of the eigenvalues are real. We can visualize the action of a Hermitian
operator as stretching the space along each eigenvector direction by a multiplicative factor
given by the eigenvalue.

For a Hermitian operator, if we denote the eigenvalues by λn and the eigenvectors by |λn⟩,
the matrix elements in this basis are simply

Omn = λmδmn , (17)

i.e. a diagonal matrix with the eigenvalues along the diagonal.

In another basis, a Hermitian operator will generally not be diagonal. But we can recognize it
as Hermitian since in an orthonormal basis, the adjoint of the corresponding matrix (defined
as the complex conjugate of the transpose) must be equal to the matrix itself:

Onm = O∗
mn . (18)

We can express this property in a basis independent language: for an operator Ô, we define
the adjoint operator Ô† to be the operator satisfying

⟨χ|Ô†|ψ⟩ = ⟨ψ|Ô|χ⟩∗ . (19)

With this definition, a Hermitian operator is an operator satisfying Ô† = Ô. A basic theorem
in linear algebra states that this is true if and only if there exists an orthonormal basis of
eigenvectors with real eigenvalues.

Properties of the Adjoint

From the definition of the adjoint, we can immediately see the following properties that will
be useful below

• (zÔ)† = z∗Ô†

• If |w⟩ = Ô|v⟩, then ⟨w|u⟩ = ⟨v|Ô†|u⟩

• (Ô1Ô2)
† = Ô†

2Ô
†
1

• If Ô|v⟩ = λ|v⟩, then ⟨v|O†|w⟩ = λ∗⟨v|w⟩

From the third property here, we see that the product of two Hermitian operators is generally
not Hermitian. However, it follows from the properties of the adjoint that the combination
i[Â, B̂] is Hermitian if Â and B̂ are Hermitian.
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Unitary operators

Another type of operator that will be important in quantum mechanics is the unitary op-
erator. These are operators that preserve the inner product (and therefore all lengths and
distances). Preserving the inner product means that if |v⟩ and |w⟩ are two vectors, and if
Û is an operator, then the inner product between Û |v⟩ and Û |w⟩ is the same as the inner
product between |v⟩ and |w⟩. This gives the condition

⟨v|U †U|w⟩ = ⟨v|w⟩ . (20)

If this is true for all states, it means that the matrix representation of U †U in any basis is
the same as the matrix representation of the identity operator 1, so they must be the same
operator:

U †U = 1 . (21)

We can think of a unitary operator as a complex generalization of a rotation: unitary
operators take an orthonormal basis to another orthonormal basis, and any operator with
this property is unitary.

Relation between unitary operators and Hermitian operators

The simplest unitary operator is the identity operator 1. If we consider a family of unitary
operators Û(ϵ) with Û(0) = 1, then for very small ϵ, we can write

Û(ϵ) = 1+ ϵB̂ + . . . (22)

where the dots indicate terms at higher orders in epsilon.4

If the relation
Û †(ϵ)Û(ϵ) = 1 (23)

holds for all ϵ, the Taylor expansion of the left side must equal the Taylor expansion of the
right side. Inserting the expansion (22) and looking at the terms of order ϵ, we find that

B̂† + B̂ = 0 . (24)

Defining A = iB, we see that the operator A satisfies −A†+A = 0. Thus, if U(ϵ) represents
a family of unitary operators near with

Û(ϵ) = 1− iϵÂ+ . . . (25)

4If you are not comfortable with Taylor expanding an operator, think of the matrix elements of that
operator in some basis. Each of these is an ordinary function of ϵ which can be Taylor expanded. The
operator B is the one whose matrix elements are the terms at order ϵ in the Taylor expansion of the matrix
elements of Û(ϵ).
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then A must be Hermitian.

We can say that −iÂ|v⟩ gives the small change in the vector under an infinitesimal unitary
transformation.

Given any Hermitian operator, we can also go the other direction and define a family of
unitary operators “generated” by this operator. From the discussion above, the operator

(1− iϵA) (26)

should be almost a unitary operator when ϵ is very small. It’s not quite, because we need to
add certain higher order terms in ϵ for (23) to be satisfied. In However, we can generate a
family of unitary operators by the following trick. We consider a limit where ϵ→ 0 so that
we can ignore any higher order terms, but we also apply the operator multiple times, so that
we don’t just end up with 1. Specifically, we define

ÛA(a) = lim
N→∞

(1− i a
N
Â)N (27)

This limit is well known as one definition of the exponential function, so we can write simply

ÛA(a) = e−iaÂ . (28)

We can think of the exponential of an operator as being defined by the power series

ex = 1 + x+
1

2
x2 + . . . (29)

or we can work in a basis where the matrix A is diagonal with eigenvalues λn and say that
in this basis, the matrix for ÛA(a) is diagonal with matrix elements e−iaλn .

In summary, we can associate a Hermitian operator to any one-parameter family of unitary
operators near the identity operator, and we can associate a family of unitary operators to
any Hermitian operator by exponentiation.

2 Basics of Quantum mechanics

We are now ready to outline the basic structure of quantum mechanics.

2.1 States

The physical configuration of a system at some time is known as a state. In quantum
mechanics, a state is represented mathematically as a nonzero vector in some Hilbert space.
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We will often denote this as |Ψ⟩. Two vectors represent the same physical state if they are
related to each other through multiplication by a complex number.5 Since the zero vector is
not allowed, any state vector is equivalent to a state with ⟨Ψ|Ψ⟩ = 1, so we will often assume
this condition and refer to such states as normalized. There is still freedom to multiply
by a complex number eiϕ with norm 1 (known as a phase) without changing the physical
configurations.

Generally, this state will evolve with time, so we can write |Ψ(t)⟩ to describe the state vector
at time t.

2.2 Observables

In quantum mechanics, physical quantities such as energy, position, or angular momentum
(we will generally call them observables) do not generally have definite values in a given
state. However, a basic assumption is that there exists for each observable O some orthonor-
mal basis of states |λn⟩, each of which has a definite value λn for O. We call these the
eigenvectors (or eigenstates) and eigenvalues associated with O. In some cases, two or more
of the eigenvalues can be the same; in this case, the whole space of states spanned by the
corresponding eigenvectors is understood to have this same definite value for O, and we have
some freedom in choosing which orthonormal basis of states to choose.

What about states which are not eigenstates? Since the eigenstates form a basis, we can
write any state |Ψ⟩ as a linear combination of these basis elements,

|Ψ⟩ =
∑
n

cn|λn⟩ . (30)

For such a state, we say that |Ψ⟩ does not have a definite value for O; in a measurement
of O, we might find any of the values λn, with probability |cn|2, and the state becomes the
corresponding eigenstate after the measurement. Here, we are assuming that the state is
normalized; otherwise |cn|2 gives the relative probability.

To see that the probabilities add up to 1 in the normalized case, we note that by the
orthonormality of the basis,

1 = ⟨Ψ|Ψ⟩ =
∑
n

∑
m

c∗ncm⟨λn|λm⟩ =
∑
n

|cn|2 = 1 . (31)

We can give a more direct formula for the probability by noting that

cn = ⟨λn|Ψ⟩ . (32)

5Mathematically, the set of nonzero vectors in an N -dimensional complex vector space CN together with
this equivalence relation defines a space called complex projective space CPN−1.
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which follows using the orthonormality of the basis by taking the inner product of |λn⟩ with
the two sides of (30). Thus if we measure O in the state |Ψ⟩, the probability that we will
obtain the result λn is simply

pn = |⟨λn|Ψ⟩|2 . (33)

If we make a large number of measurements of the same observable on equivalent states, we
will obtain a distribution of possible results governed by these probabilities. The average of
these results, known as the expectation value of the observable is

Ō =
∑
n

pnλn =
∑
n

λn|⟨λn|Ψ⟩|2 (34)

We may also be interested in how spread out the distribution of results is. A useful measure
of this is to compute the standard deviation of the distribution, defined by taking the average
value of (O − Ō)2 and then taking the square root. In quantum mechanics, we call this the
uncertainty ∆O of the observable O in the state |Ψ⟩. It is given explicitly by

∆O = (
∑
n

pn(λn − Ō)2)
1
2

= (
∑
n

pnλ
2
n − (

∑
n

pnλn)
2)

1
2 . (35)

2.3 Hermitian operators for observables

Given any observable O, we can define a Hermitian operator Ô associated with it, by defining

Ô|λn⟩ = λn|λn⟩ (36)

for the eigenstates of O and using linearity to define the action on any other state. By
our definition, the eigenvectors of Ô are orthonormal and the eigenvalues are real, so the
operator is Hermitian.

We will see below what the physical interpretation of the state Ô|Ψ⟩ is; for now we point
out the useful result that the expectation value of O defined above can be calculated for the
state Ψ as

Ō = ⟨Ψ|Ô|Ψ⟩ . (37)

This can be checked using the definition (36) to reproduce the result (36).

Commuting vs noncommuting observables

For two different observables O1 and O2, it is typically the case that the eigenvectors of one
are not eigenvectors of the other. Physically, this means that a state with a definite value
for O1 will not have a definite value for O2 and vice versa.
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On the other hand, if the two observables do share a common basis of eigenstates, it is
possible to know the value of both observables at the same time.

It is not hard to show that two Hermitian operators will share a common basis of eigenstates
if and only if the corresponding operators commute with each other, i.e. that in acting with
the two operators in succession on any state, we get the same result regardless of the order.
This will be true if and only if the commutator [Ô1, Ô2] ≡ Ô1Ô2 − Ô2, Ô1 is equal to zero.

In the case where the operators share a common basis, both O1 and O2 will have matrix
representations that are diagonal in this basis, so it is clear that the corresponding matrices
also commute with each other.

The fact that some observables cannot have definite values simultaneously leads directly to
the idea of an uncertainty principle in quantum mechanics. Starting from the definition (35)
of uncertainty and making use of the Cauchy-Schwarz inequality (see Griffiths for details) it
is possible to prove the generalized uncertainty principle

∆O1∆O2 ≥
1

2
|⟨i[O1,O2]⟩| . (38)

We will see that this leads to the more familiar Heisenberg Uncertainty Principle when
applied to the position and momentum operators.

2.4 Physical transformations as unitary operators

In quantum mechanics, physical transformations such as rotations, translations, and time
evolution correspond to maps that take states to other states. These maps should be linear
and preserve the inner product, that is they should act as unitary operators.

The linearity property means that if we have a superposition of two states, the transformation
of this state will just be the superposition of the superposition of the transformed states.
For example, if we have the state 1

2
| ↑⟩+ 1

2
| ↓⟩ for a spin half particle, and we rotate by π/2

about the y axis so that | ↑⟩ goes to | →⟩ and | ↓⟩ goes to | ←⟩, the state 1
2
| ↑⟩+ 1

2
| ↓⟩ should

be transformed to 1
2
| →⟩+ 1

2
| ←⟩. This seems very plausible, but in the end, it is just a basic

assumption of quantum mechanics. Mathematically, it means that physical transformations
are represented by linear operators.

Preserving the inner product is equivalent to the requirement that a normalized state |Ψ⟩
should transform to another normalized state. This is essentially the statement that probabil-
ities must be conserved: given any orthonormal basis corresponding to a physical observable,
if the norm of a state decreased after some physical transformation, the probabilities for the
various possible outcomes of a measurement would no longer sum to 1.
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2.5 Infinitesimal physical transformations

Physical transformations such as rotations or translations come in continuous families. For
example, we can rotate about an axis by any angle θ or translate in the x direction by any
distance a. For a quantum system, these families of transformations correspond to families
of unitary operators. If T̂ (a) is such a family of operators depending on some parameter a,
with T̂ (0) = 1, i.e. a = 0 corresponds to doing nothing, then it is useful to consider the
possible infinitesimal transformations, that is, the transformations for infinitesimal values
of a. For example, we can consider a rotation by an infinitesimal angle or translation by
an infinitesimal distance. These are important, because many more general transformations
can be built up by doing a series of these infinitesimal transformations.6

According the general discussion of unitary operators above, any infinitesimal transformation
can be expressed as

T̂ (ϵ) = 1− iϵÔ + . . . (39)

where Ô is a hermitian operator. This can be associated some physical observable O. Con-
versely, given any physical observable O, there is an associated Hermitian operator Ô. From
this, we can define an infinitesimal physical transformation as in (39). Applying this trans-
formation many times, we generate a family of physical transformations described by the
unitary operators (see discussion in section 1)

T̂ (a) = e−iaÔ . (40)

Thus we see that there is a one-to-one correspondence between infinitesimal physical trans-
formations (or the families of transformations that they generate) and physical observables.
As we will see below, the connection is the familiar(?) one from classical mechanics:

• energy ↔ time translation/evolution

• momentum in direction n̂ ↔ translation in direction n̂

• angular momentum around the axis in direction n̂ ↔ rotations about the axis in di-
rection n̂

Normally this connection is discussed as the connection between symmetries and conserved
quantities. But only some physical quantities will be conserved and only some transforma-
tions are symmetries. We will now see that in quantum mechanics, the physical observables
that are conserved quantities are exactly the ones associated with physical transformations
that are symmetries.

6There are some physical transformations, such as mirror reflection, that cannot be built up from a series
of infinitesimal transformations. These transformations are often referred to as discrete.
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Energy and time evolution

Perhaps the most important physical transformation in quantum mechanics is the operation
of time evolution that takes us from the state of the system at some time t0 to the state of
the system at some later time t0 + δt. This is a unitary operator that we will call

T̂ (δt, t0) . (41)

In many cases, we have a system with time-translation invariance: this means that the
evolution operator is the same for any time t0, so T̂ is only a function of δt.

As above, we can think of an infinitesimal version of this operator, where δt is taken to be
very small. In this case, we can write

T̂ (δt, t0) = 1− iδtĤ
~

+ . . . (42)

where Ĥ is a Hermitian operator that we call the Hamiltonian; in general, it can depend
on t0. We will see below that in the time-translation invariant case where it does not, the
physical quantity associated with Ĥ is always conserved, this conserved quantity is what we
call energy. The constant ~ introduced above is included so that Ĥ will have the ordinary
units of energy instead of inverse time.

The result (42) gives the infinitesimal form of the time evolution operator. Applying this to
a state, we learn that

|Ψ(t0 + δt)⟩ = (1− iδtĤ
~

+ . . . )|Ψ(t0)⟩ (43)

Rearranging this, we get

1

δt
(|Ψ(t0 + δt)− |Ψ(t0)⟩) = −i

Ĥ

~
|Ψ(t0)⟩+ . . . , (44)

where the dots indicate terms of order δt and higher. Finally, in the limit δt → 0, the left
side becomes the derivative of the state, so we obtain a differential equation for the time
evolution of a state

i~
d

dt
|Ψ⟩ = Ĥ|Ψ⟩ (45)

This is known as the Schrödinger equation. In this general form, it applies to any quantum
system.

Conserved quantities in quantum mechanics

Now that we have some understanding of time evolution, we can discuss what is meant by
a conserved quantity in quantum mechanics. Since physical observables don’t even have
definite values for most states, it is less obvious what we might mean by something being
conserved. However, we might consider the following possibilities

12



• A physical observable O is conserved if and only if its expectation value is unchanging
in time for all states of the system.

• A physical observable O is conserved if and only if for any state of the system, the
probabilities of finding the various eigenvalues λn are all unchanging in time.

The latter statement clearly implies the former and appears to be a stronger condition, but
we will now see that they are equivalent. Furthermore both are equivalent to the statement
that the operator Ô associated with O commutes with the Hamiltonian operator, i.e.

[Ô, Ĥ] = 0 . (46)

We are assuming here that O itself is some fixed physical quantity with no inherent time
dependence (i.e, we assume dÔ/dt = 0). For the proof, see the homework 3 solutions.

Symmetries in quantum mechanics

A symmetry in quantum mechanics is a physical transformation represented by some unitary
operator T̂ with the property that if |Ψ(t)⟩ is any solution to the Schrödinger equation,
then T̂ |Ψ(t)⟩ is a solution to the Schrödinger equation. This definition is in line with our
intuition that symmetries acting on a system give us configurations “equivalent” to the
original configuration.

To understand which physical transformations have this property, consider any |Ψ(t)⟩ satis-
fying the Schrödinger equation (45). Then T̂ |Ψ(t)⟩ will also satisfy the Schrödinger equation
for some specific operator T̂ if and only if

i~
d

dt
(T̂ |Ψ⟩) = Ĥ(T̂ |Ψ⟩)

⇐⇒ i~T̂ d

dt
|Ψ⟩ = ĤT̂ |Ψ⟩

⇐⇒ T̂ Ĥ|Ψ⟩ = ĤT̂ |Ψ⟩
⇐⇒ [T̂ , Ĥ]|Ψ⟩ = 0 . (47)

This will be true for any possible state |Ψ⟩ if and only if

[T̂ , Ĥ] = 0 . (48)

Thus, a physical transformation is a symmetry if and only if the corresponding unitary
operator commutes with the Hamiltonian.

If we have a continuous family of symmetries such as rotations around an axis or trans-
lations, the operators T̂ (ϵ) representing infinitesimal transformations must also obey the
relation (48). From the expression (39) we see that this will be true if and only if the Hermi-
tian operator Ô associated with this transformation also commutes with the Hamiltonian.
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Thus, the condition that a Hermitian operator gives an infinitesimal transformation that is
a symmetry is

[Ô, Ĥ] = 0 . (49)

Symmetries ↔ conservation laws

We have already seen that any Hermitian operator can be associated with a physical ob-
servable and also a physical transformation. We now see that the condition (46) that the
physical observable associated with Ô is conserved is the same as the condition (49) that
the physical transformation associated with Ô is a symmetry. This establishes the relation
between symmetries and conservation laws in quantum mechanics.

Time translations and energy

The most universal example of a operator that commutes with the Hamiltonian is the Hamil-
tonian itself. Thus, for any quantum mechanical system with time-translation invariance (i.e.
for which a single time-independent operator governs the time evolution at all times), the
observable associated with the Hamiltonian operator must be conserved. From our experi-
ence with classical mechanics, we know that the conserved quantity associated with time-
translation invariance is the total energy of the system. Thus, the Hamiltonian operator
appearing in the Schrödinger equation is the energy operator.

A useful consequence of this is that to understand time-evolution in quantum mechanics, it
is very useful to find the eigenstates of the energy operator. If |En⟩ represent these energy
eigenstates, we have by definition

Ĥ|En⟩ = En|En⟩ (50)

so the time evolution operator acts as7

T̂ (t)|En⟩ = e−
i
~ Ĥt|En⟩ = e−

i
~Ent|En⟩ (51)

We see that the state of the system after time t is physically equivalent to the original state,
since it is just the original state multiplied by a phase factor. In particular, the probabilities
for any possible measurements will be the same as for the initial state. For this reason, we
call the energy eigenstates stationary states.

Using the linearity property of time evolution in quantum mechanics, it is now simple to
understand the evolution of any state. We first take the state at t = 0 and express it as a

7We are using here that if a state is an eigenstate of some operator, it will be an eigenstate of any power
of that operator and more generally any (analytic) function of that operator. Alternatively, we can just
check that our final result satisfies the Schrödinger equation.
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combination of energy eigenstates:

|Ψ(t = 0)⟩ =
∑

cn|En⟩ cn = ⟨En|Ψ(t = 0)⟩ . (52)

By linearity, we can immediately say that the state at a later time is

|Ψ(t)⟩ = T̂ (t)|Ψ(t = 0)⟩ =
∑

cnT̂ (t)|En⟩ =
∑

cne
− i

~Ent|En⟩ . (53)

Thus, the problem of understanding time evolution is reduced to the problem of finding the
energy eigenstates, i.e. solving (50). For this reason, (50) is often called the time-independent
Schrödinger equation.

Translations and momentum

Another important example of an observable being related to some physical transformation
is the connection between translations and momentum in quantum systems. Let T̂ (a) be
the operator that translates a system by an amount a in some direction. Then we can write
the infinitesimal version of this transformation as

T̂ (a) = 1− ia1
~
P̂ + . . . . (54)

By our general discussion above, the Hermitian operator P̂ will correspond to a physical
quantity that is conserved for any system where these translations are a symmetry. From
classical mechanics, we know that this is the defining property of momentum, so we can say
that P̂ is the quantum operator associated with momentum. We have again included the
constant ~ into the definition above in order that P̂ will have the usual units of momentum.

For a system with a single spatial direction labeled by coordinate x, we can understand
better the properties of the momentum operator by noting that if a state |Ψ⟩ is defined by
wavefunction ψ(x) the the state T̂ (a)|Ψ⟩ must have wavefunction ψ(x − a) i.e. the same
function translated in the x direction by an amount a. This is implied by the definition of
T̂ (a). Mathematically, this gives

⟨x|T̂ (a)|Ψ⟩ = ψ(x− a) . (55)

This equation is true for all a, so it must be true for very small a where (54) holds. in this
case, we can expand both sides in a Taylor series in a, and all the terms must be equal.
Inserting (54) into (55) and equating the terms with one power of a, we find

−ia1
~
⟨x|P̂ |Ψ⟩ = −aψ′(x) (56)

or

⟨x|P̂ |Ψ⟩ = −i~ d
dx
ψ(x) . (57)
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We see that acting with the momentum operator on a state |Ψ⟩ is equivalent to acting with
−id/dx on the wavefunction for that state.

Using this result, one application is to derive the commutator between the position operator
and the momentum operator corresponding to that same direction. To do this, we note that
the position operator X̂ obeys X̂|x⟩ = x|x⟩, so for any |Ψ⟩,

⟨x|X̂P̂ |Ψ⟩ = x⟨x|P̂ |Ψ⟩ = −i~x d
dx
ψ(x) . (58)

On the other hand, the wavefunction for the state X̂|Ψ⟩ is

⟨x|X̂|Ψ⟩ = x⟨x|Ψ⟩ = xψ(x) (59)

so by our result above, the wavefunction ⟨x|P̂ X̂|Ψ⟩ for the state P̂ (X̂|Ψ⟩) is

−i d
dx

(xψ(x)) = −i~ψ(x)− i~x d
dx
ψ(x) . (60)

Thus, we finally have that

⟨x|[X̂, P̂ ]|Ψ⟩ = i~ψ(x) = i~⟨x|Ψ⟩ . (61)

This implies that the matrix elements of the operator [X̂, P̂ ] are the same as the matrix
elements of the operator i~1, so it must be that

[X̂, P̂ ] = i~1 . (62)

This fundamental relation will be very useful in understanding a variety of quantum mechan-
ical systems. Based on the generalized uncertainty principle above, this tells us immediately
that

∆X∆P ≥ ~
2
. (63)

Example: a particle in one dimension

As an example for how to use all of this formalism, consider a physical system describing
a particle in one dimension subject to forces corresponding to a potential energy function
V (x). In classical mechanics, the energy for such a system is given by

E =
p2

2m
+ V (x) . (64)

For the quantum system, time evolution is governed by the Hamiltonian, which is the same
as the energy operator. In quantum mechanics, position and momentum can’t have definite
values at the same time, so at best, the relation (64) could be true about the expectation
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values of these quantities. We can arrange this by translating (64) to a statement about
operators

Ĥ =
P̂ 2

2m
+ V (X̂) . (65)

With this definition, we can now translate the general form (45) for the Schrödinger equation
to a differential equation describing the evolution of the position-space wavefunction ψ(x).
We’ll call the wavefunction at time t ψ(x, t). Starting from (45), we can take the inner
product on both sides with the position space basis element |x⟩ to obtain

⟨x|i~ d
dt
|Ψ⟩ = ⟨x|Ĥ|Ψ⟩

⇐⇒ i~
d

dt
⟨x|Ψ⟩ = ⟨x| P̂

2

2m
+ V (X̂)|Ψ⟩

⇐⇒ i~
∂

∂t
ψ(x, t) =

1

2m
⟨x|P̂ 2|Ψ⟩+ ⟨x|V (X̂)|Ψ⟩

⇐⇒ i~
∂

∂t
ψ(x, t) =

1

2m
(−i~ d

dx
)2⟨x|Ψ⟩+ ⟨x|V (x)|Ψ⟩

⇐⇒ i~
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) (66)

Thus, we have derived the usual position-space form of the 1D Schrödinger equation, ap-
pearing on page 1 of Griffiths.

3 Multipart quantum systems

It is often the case that a quantum mechanical system that we are interested in has various
independent degrees of freedom i.e. separate parts that each have their own state. This is
the case in a system with many particles, but also in systems where a single particle has
both x motion and y motion, or x, y, z motion and spin.

To understand the quantum description of multipart systems, consider an example where
we have two particles in one dimension. Classically, each would have a definite value for
position. We can describe these by introducing variables x1 and x2 describing the locations
of the two particles. But in the quantum system, states with definite values for x1 and x2
are very special states - they are eigenstates for the two position operators X̂1 and X̂2. If
we label these states as |x1x2⟩, then the general state will be a linear combination of these.
We need a function ψ(x1, x2) to describe the coefficients in such a linear combination, so we
see that the wavefunction for the two-part system is a function of two variables rather than
just two functions of one variable.

The key point here is that the basis for the combined system is in one-to-one correspondence
with pairs (|x1⟩, |x2⟩) of basis elements, one from each part. Mathematically, a vector space
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with basis constructed in this way is known as the tensor product or direct product of the
the two smaller vector spaces.8.

In a case where both parts are represented by finite dimensional Hilbert spaces, if we have d1
basis elements |n⟩ for the first part and d2 basis elements |N⟩ for the second part, there are
d1d2 basis elements for the tensor product Hilbert space. These are labeled either as |nN⟩
or |n⟩ ⊗ |N⟩, where the ⊗ in the latter notation indicates that there is a bilinear operation
that takes one vector from the first Hilbert space and one vector from the second Hilbert
space and gives us a vector in the larger Hilbert space. We can define this operation on any
two vectors |ψ⟩ =

∑
n cn|n⟩ and |Ψ⟩ =

∑
cN |N⟩ by

|ψ⟩ ⊗ |Ψ⟩ = (
∑
n

cn|n⟩)⊗ (
∑

cN |N⟩) ≡
∑
nN

cnCN |n⟩ ⊗ |N⟩ . (67)

Physically, this tensor product state represents a state where the first subsystem is definitely
in the state |ψ⟩ while the second part is definitely in the state |Ψ⟩. A very important point
is that only very special states can be written in this way. For example, in a system with
two spins, the state

1√
2
(| ↑⟩ ⊗ | ↑⟩+ | ↓⟩ ⊗ | ↓⟩) (68)

cannot be written as a tensor product; in this case we say that the first subsystem is entangled
with the second subsystem.

We emphasize that the two vector spaces need not have the same dimension. For example,
when describing a particle with position degrees of freedom and also spin degrees of freedom,
we would have basis elements |xsz⟩ ≡ |x⟩ ⊗ |sz⟩ where the first part is infinite dimensional
and the second part is finite dimensional. For a system like this, the general state would be
a superposition ∫

dx(ψ↑(x)|x ↑⟩+ ψ↓(x)|x ↓⟩) (69)

so we would have an “up” wavefunction and a “down” wavefunction to describe the state.

For a multipart system, given any operator acting on one of the individual Hilbert spaces,
we can promote it to an operator acting on the full Hilbert space simply by declaring that
it has no effect (i.e. that it acts as the identity operator) on the remaining parts. In our
example with two finite-dimensional systems, if Ô1 is an operator acting on the first part as

Ô1|n⟩ =
∑
m

O1
mn|m⟩ , (70)

we can promote it to an operator acting on the whole system as

Ô1|nN⟩ ≡
∑
m

O1
mn|mN⟩ . (71)

8This should be distinguished with a direct sum, in which the set of basis elements for the full space is
taken to be the union of basis elements for the subspaces
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Sometimes the full operator is denoted by Ô1⊗11 to emphasize that it is acting as the identity
operator on the second part.

It is easy to check from the definition that operators defined in this way but acting on the
different parts automatically commute with one another. Thus, we can write the product
of operators acting on the different parts as O1O2 or as O2O1; in the ⊗ notation, both of
these are equivalent to O1 ⊗ O2. As an example, consider the operator x̂Ŝx in our system
describing the position and the spin of a particle. This is the product of the operator obtained
by promoting x̂ to an operator on the full system with the operator obtained by promoting
Ŝx to an operator acting on the full system. Acting on an (x, Sz) basis state |x ↓⟩, this gives

x̂Ŝx|x ↓⟩ =
~
2
x|x ↑⟩ . (72)

Just as the states of the combined system cannot usually be written in the form |Ψ1⟩⊗ |Ψ2⟩,
general operators of the combined system cannot usually be written as O1 ⊗O2. Typically,
the best we can do is write general states/operators as linear combinations of things that
can be written in this way.
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