
The Harmonic Oscillator, a Review

Here, we review the physics of the one-dimensional harmonic oscillator, a quantum system
describing a 1D particle with Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 . (1)

As we have seen, a key problem is to understand the energy eigenstates of this Hamiltonian,
i.e. the states satisfying

Ĥ|Ψ⟩ = E|Ψ⟩ (2)

These will allow us to give the general solution of the Schrödinger equation for the time
evolution of states.

We can actually accomplish this without ever using wavefunctions or the position basis if we
simply make use of the basic relation

[x̂, p̂] = i~ . (3)

The trick is to define the annihilation operator

â =

√
mω

2~
x̂+

i√
2mω~

p̂ (4)

and its adjoint, the creation operator

â† =

√
mω

2~
x̂− i√

2mω~
p̂ . (5)

Then using (3) and these definitions, we find that1

[â, â†] = 1 (6)

and

Ĥ =
~ω
2
(ââ† + â†â) = ~ω(â†â+

1

2
) . (7)

Making use of these results, we can show that

[Ĥ, â] = −~ωâ [Ĥ, â†] = ~ωâ† (8)

Now, suppose that |E⟩ is an energy eigenstate. We will now show that â|E⟩ is an energy
eigenstate with energy E − ~ω and â†|E⟩ is an energy eigenstate with energy E + ~ω. To
see this, we use (8) to obtain

Ĥ(â|E⟩) = ([Ĥ, â] + âĤ)|E⟩ = −~ωâ|E⟩+ âE|E⟩ = (E − ~ω)â|E⟩ . (9)

1We recall also that the commutator of any operator with itself is zero by the definition of the commutator,
so [a, â] = [â†, â†] = 0.
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A similar calculation shows that Ĥ(â†|E⟩) = (E + ~ω)â†|E⟩. This may be a little discon-
certing, since it looks like we could get states with an arbitrarily large negative energy by
acting with â enough times.

But this can’t be right: if |E⟩ is an energy eigenstate, then

E = ⟨E|Ĥ|E⟩
=

1

2
~ω + ⟨E|â†â|E⟩

≥ 1

2
~ω (10)

where we have used the fact that ⟨E|â†â|E⟩ is the inner product of â|E⟩ with itself, which
must be nonnegative and vanish only if â|E⟩ = 0. So all the energy eigenvalues must be
positive.

The only way to avoid our earlier conclusion about having arbitrarily negative energies would
be if by acting with âs on any energy eigenstate we eventually get to a state where â|0⟩ acting
on this state gives 0. By (10), the energy of such a state is equal to ~ω/2. As we’ll show
below, there is a unique state with this property, and the normalized state is usually called
|0⟩, not to be confused with the zero vector.

Starting from |0⟩, we can generate all the other energy eigenstates by acting with the creation
operator. We define

|n⟩ = 1√
n!
(â†)n|0⟩ (11)

where the constant is chosen so that the states are properly normalized. Our earlier calcu-
lations then show that these have energies

En = ~ω(n+
1

2
) . (12)

With these properly normalized states, we find that

a†|n⟩ =
√
n+ 1|n+ 1⟩ â|n⟩ =

√
n|n− 1⟩ â†â|n⟩ = n|n⟩ . (13)

To complete the discussion, we need to show that â|0⟩ = 0 specifies the state uniquely.
We will do this by showing that it completely determines the position space wavefunction
ψ0(x) = ⟨x|ψ⟩ for the state. Using â|0⟩ = 0, we have

⟨x|â|0⟩ = 0

=⇒ ⟨x|
√
mω

2~
x̂+

i√
2mω~

p̂|0⟩ = 0

=⇒
√
mω

2~
⟨x|x̂|0⟩+ i√

2mω~
⟨x|p̂|0⟩ = 0

=⇒
√
mω

2~
xψ0(x) +

i√
2mω~

~
i

d

dx
ψ0(x) = 0 (14)
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Solving this equation, we have that

ψ0(x) =

(
π~
mω

) 1
4

e−
1
2

mω
~ x2

. (15)

where the overall constant has been fixed by demanding a normalized wavefunction.

In performing calculations for harmonic oscillator states, we can often avoid using the posi-
tion space wavefunctions by rewriting x̂ and p̂ operators in terms of creation and annihilation
operators

x̂ =

√
~

2mω
(â+ â†) p̂ = −i

√
m~ω
2

(â− â†) (16)

and then using (6) and (13). For example,

⟨2|x̂|1⟩ =
√

~
2mω

⟨2|â+ â†|1⟩ =
√

~
2mω

⟨2|(|0⟩+
√
2|2⟩) =

√
~
mω

(17)
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