
Tutorial #13: Tunnelling

One of the most dramatic predictions of quantum mechanics is the

ability of particles to pass through potential energy barriers which they do

not have enough energy to overcome classically. This is the phenomenon

of TUNNELING, and in today's tutorial we will understand it quantitatively

using the Schrodinger equation.

Question 1

a) As a warm-up, consider the situation where we have a ball rolling

towards a hill of height h. What velocity would be required to ensure that
the ball will get over the hill?

b) Suppose we sent the ball toward the hill with a smaller velocity than the
one in part a. What classical law of physics tells us that the ball can't get

over the hill?

Preview: The basic idea of tunnelling is that according to quantum

mechanics, the ball has some probability of gett¡ng to the other side of the
hill no matter how smollits velocity is. We will now try to understand this

better, and also understand why no laws of physics are violated. I should

stress that the probability of tunnelling in some macroscopic example like

the ball and hill is unimaginably small. On the other hand, microscopic

examples of tunnelling (e.g. where an electron gets from one place to
another through a region where it does not have enough energy to be

classically) happens all the time and can even be put to good use in

technologies such as the STM (scanning-tunnelling electron microscope).



Question 2

Let's now consider a setup where tunnelling can actually be observed.

Consider a situation where we have two thin wires separated by an air

gap.
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Suppose the work function for the metal is W=3eV, that the distance

between the wires is d, and that the potential energy for an electron inside

the wire is zero.

a) Plot the potential energy of the elecJron as a function of its position
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b) According to classical physics, what would happen if we sent an electron

through the left wire towards the air gap with kinetic energy E < W?

Question 3

ln quantum mechanics, the tunnelling phenomenon arises because the

wavefunction for an energy eigenstate can be non-zero even in regions

where the particle does not have enough energy to be classically. To

understand this quantitatively, let's first consider the case where d is very

large and investigate the wavefunction of an electron near the end of the

first wire. We know from last week that inside the wire, assuming the
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electron's energy is E and the potential is 0, the wavefunction is a

sinusoidal function Ù(x) = R cos(kx) + B sin(kx) with wavelength given by

h/1 - ,12* E

This was the general solution to the time-independent Schrodinger

equation
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for U=0. We will get a similar oscillating wavefunction in any region where

E > U (i.e. where the electron is allowed to be classically).

Now let's find out what the wavefunction looks like for the region

outside the wire: ô,t(")
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lf we are in a region where U = W > E (classically forbidden since it implies

a negative kinetic energy), the equation (*) tells us that we need a function

whose second derivative is proportional to the function (with a +ve

proportionality). Such a function is an exponential ea 
x.

a) For which values of a (you should find 2) does tþ(x) = ea 
x 

satisfy the

time-independent Schrodinger equation aþove? Answer ¡n terms of m, h,

E, ond W. 
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b) Which of the two values of a that you found in part c make sense

physically?

c) Complete the plot of the wavefunction near the edge of the wire. A/ofe

thot physical wovefunctions should not hove ony jumps or kinks.

outside the wire, even if its energy is less than the work function. What is

the probability density for finding the electron at a distance d into the air
gap, relative to (i.e. divided by) the probability density for finding it at the
edge of the wire? Answer in terms of m, h, W, E, and d.



e) Going back to the situation with two wires (i.e. small d), we can now

understand the tunnelling quantitatively.

lf d=0, the electron will definitely get to
the second wire (probability 1-). For a

finite separation, we can estimate the
tunnelling probability by how much the
probability density for the electron's
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wavefunction dies off between the two wires. Thus:

Tunnelling Probability =
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f) lf W = 3eV and the electron has energy 1 eV, how far apart can the wires
be if we want at least a 1-0-6 probability of tunnelling?

g) lf we double this distance, what is the tunnelling probability?



Question 4

A related example is where we have an electron trapped in a thin
short wire and we bring another identical wire nearby:
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The simulation we saw in class (also set up at the front of the room)
showed that as time passes, the probability density for the electron
"bounces back and forth" between the two wires:.il=j=
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a) Based on the this time dependence of the probability density, what can

we say about whether or not the initial wavefunction is an energy

eigenstate for the system with the two wires?



Hopefully, you remembered that energy eigenstates always have constant
probability density (that is why we call them STATTONARY STATES), so the
wavefunction we started with cannot be an energy eigenstate for the
system with two wires. On the other hand, any state can always be written
as a sum of energy eigenstates. ln this case the true energy eiegnestates of
lowest energy look like this:
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b) Based on the pictures, how can we write our initial wavefunctio n'in 

on

terms of the energy eigenstate wavefunctions $1(x) and $2(x)?

c) Based on your answer to part b, what will the wavefunction be at some

later time t? Answer in terms of úlx), úr(x), Eo E2,t, and h.
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Question 5 (if you just can't get enough tunnelling):

ln this question, we'll estimate how long we have to wait before the
electron is likely to be found in the second wire.

a) The energy of the electron in the example above is about

E1=h2l(8m12))

(th¡s is the ground state energy for an electron in a single wire). If we
measure the velocity of the electron, estimate the typical value we would
find for lvl. Answer in terms of h,m, ond L.

b) lf we imagine a classical particle bouncing back and forth in the wire
with this velocity, how often would it collide with the end of the wire near
the air gap? Answer in terms of h, m, and L.

c) lf the electron has a tunnelling probability for each of these collisions
given by your answer to part 39, how long on average will it be before the
electron tunnels to the second wire? Answer in terms of L,m,h,W,ond d.



d) lf t = LOnm how large does d have to be before the time for tunnelling is

greater than the age of the universe (t = L010 years)

e) We can actually use our result from 5c to estimate the energy difference
between the two true energy eigenstates in question 4. Using your answer

to 4c, show that the time before the electron is likely to be found in the
second wire is given by t = hn / (Ez- E1) where E2 and E1 are the energies

of the eigenstates shown in question 4. Using this result and your answer
(5c) for the time t, estimate the energy difference Ez - Et.


