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Physics 200 Tutorial t2z

Bound States in Quantum Mechan¡cs

So far in class, we have talked about the quantum mechanical
description of freely propagating (i.e. travelling) electrons (or other
particles). We understood that the wavefunctions for these may be
written as a superposition of pure waves (momentum e¡genstates)
with:

wavelength = h/momentum À= h/p

frequency = energy/ h f =E/h

where E is the electron's kinetic energy p2/Qml.

Mathematically, the formula for a complex wave with wavelength
À and frequency f is
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so setting À = h/p and f = f/h = p2/(Zmh), we get

Ü(x,t)= e
2nilh (px - p'/(2m) t)

as the wavefunction for a momentum eigenstate. The time dependence
is just a símple oscillation, but once we add up these waves in a general
wavefunction, we get wavepackets (or more general shapes) that
propagate, disperse, etc... . Any superposition of the oscillating pure
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waves (and therefore any electron wavefunction) satisfies the
Schrodinger equation, which is conventionally written as

where we define ft = h/(2 n/ (pronounced "h-bar").



For most application, the particles are not just freely propagating.

lnstead, we have forces on the particles (e.g. the Coulomb force
between electrons and protons in atoms) ,and often these forces result
in electrons or other particles being confined in a particular region of
space (e.g. near the nucleus of an atom, or inside a metal). These

confined states are known as BOUND STATES, and they exhibit some
really interesting features that we will begin to explore today.

Soon, we will learn how to write down the Schrodinger equation
when we have general forces or potentials, but for today, we,ll look at a
really simple example: an electron moving in a thin (1-dimensional)

finite wire:

L= Ie^5lx "{ h;.s.
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Question 1

a) lf the electron is confined to a wire stretched between x=0 and x=1,

what can we say about the wavefunction r.,b(x)? How would the possible

${x)s differ from the case where the wire is infinite?

b) Sketch a possible wavefunction for the electron.
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Question 2

For wavefunctions of freely propagating electrons, we said that it is
always possible to decompose these into superpositions of pure waves.

These waves could have any wavelength and any frequency, as long as

f- 2m 72
(this follows from À = h/p and ffi = pz/Qm))

For an electron in a wire of length L, we can think of the electron as

being freely propagating inside the wire, but constrained not to move
past the ends. ln this case, we can thing of the possible wavefunctions

as being built up from finite waves (like the waves on a guitar str¡ng)

rather than "pure" waves that go on forever in both directions.

a) What can you say about the wavelengths/frequencies for the modes

of vibration (harmonics) on a guitar string? (Hint: for o string of fixed
length ond tension, con you make ony sound you want?)

b) Sketch the profile of a guitar string vibrating at its lowest possible

frequency.
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c) Based on the analogy w¡th a guitar string, what wavelengths do you

think are allowed for an electron in a wire of length L?

d) lf we assume that the relationship between wavelength and

frequency still holds for the confined electron, what are the allowed
frequencies for these finite waves?

e) What does your result in part d imply about the possible energies of
an electron moving in a finite wire?



Question 3

Now let's try to verify our guesses using Schrodinger's equation.

a) Our study of free electrons revealed an important connection
between energy and frequency for electrons, just like the relation
between momentum and wavelength. States of a definite energy E

should have wavefunctions that simply oscillate in time with a definíte
frequency f = E/h. More precisely, we want the time dependence to be
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(E/h) 
', ,, *" had for pure waves. lf

l, r\ -)--:E+r[(*,t) = {(*) e'""T t

is a solution to the Schrodinger equation in the wire, determine the
equation that must be satisfied by f(x).
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b) The equation you just derived is the "time independent Schrodinger

equation". lt determines the specific shape that the wavefunction must

have at t=0 so that it will just oscillate with frequency E/h as a function
of time (and therefore have a definite energy E). tt is simpler than the
full Schrodinger equation since it only depends on space and not time.
Linear equations like this with two derivatives usually have two
independent solutions. Show that for your equation, two solutions are

f1(x)= çs51¡*) and f2(x)= 5¡¡1¡*¡

and determine k in terms of E. (Note: the general solution is just the
superposition of these two with arbitrary coefficients),



c) So far, we haven't used the fact that the electron is trapped in a wire.

lf we demand that r.,l.r(x) = 0 for x outside the wire and that $ us

continuous, the solutions must go to zero at x=0 and x=1. lf we want to
have a solution of the form

Acos(kx)+Bsin(kx)

satisfying this requirement, what can we say about the constants A, B,

and/or k? (note: you don't need to use the relation between k ond E for
this part.)

d) Combining your results from part b) and c), what are the possible

energies for an electron in a LD wire of length L? Does this agree with
your answer for 2 e)?



e) sketch f(x) = tþ(x,0) for the state with the lowest possible energy. ls

this energy zero? What would the minimum energy be according to
classical physics (assuming the potential energy in the wire is 0)?
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# TAKE HOME MESSAGE:4

We have seen in our simple example a dramatic general feature of
bound states in quantum mechanics: Åthev con onlyex¡st ot specif¡c

enerqies.*We will see that this explains the discrete nature of the

spectrum from gases of atoms and also resolves the problem of the
classical instability of atoms. We have also encountered the
phenomenon of ZERO-POINT ENERGY: enen in theìr lowest energy

states, bound particles still have kinetic energy.

Question 4

Referring to your wavefunction from question 3 e, what does the

uncertainty principle tell us about the range of velocities we might find
if we measure the velocity of the electron in its lowest energy state in a

wire of length LOnm?



Question 5

ln the simulation of a propagating wavepacket, one feature that we did

not discuss is the fact that after some time, the wavepacket becomes

asymmetrical
------)

with the wavelength near the front end of the packet appearing shorter
than the wavelength near the back. Can you explain this?



Question 6

Verify that the pure waves from page 1 also satisfy the differential

equation

.L ,-?k = _t,Éqf1^V"T = -T-,iãij

lf this equation has the same set of pure wave solutions, how do we

know that this isn't the right equation for quantum mechanics instead

of the Schrodinger equation?


