Name:
Physics 200 Tutorial 10
‘Complex Numbers and Quantum Superposition

By thinking about the photon picture of polarizer
experiments, we have been led to the idea of quantum
suberpr’ition. An important feature of this is that if larand |b»
are’ two states of a physical system (perhaps with definite
values for some physical property such as position) then we can
also have a state

aja)+ Blby

Up until now, we have been assuming that a and B are real
numbers, but today we will see that in order to describe the
most general states, we need to allow a and B to be complex

numbers.

Our starting point will be the model we have developed
for polarized light. Classically, we say that light polarized along
any direction could be obtained by superposing light polarized
| along x and light polarized along y (assuming that the light is
travelling in the z direction). But so far, we have only |
considered adding these two components in phase:
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But we can get more general polarizations of light by adding the
two components out of phase:

E%

Now instead of oscillating back and forth in one direction (so
~ called LINEAR POLARIZATION), the electric field rotates around
in an ellipse. This is known as ELLIPTICAL POLARIZATION.

Mathematically, we can write the

HU\A-on viewd ]
of Eat a S electric field as
xed ‘ R
location. £ = E, % COS(k zI-wt+ oM
% ’1:. 2 +-Ev§cos(k z—-wt+dy)

where‘k; 2r/h and w = 2ief. For ¢, = ¢,, we just have ordinary
(linear) polarization, but for ¢, # ®,, we have the more general
case of elliptically polarized light.

Question 1

As an example, letE, = 1, E, = 2, ¢, = 0 and &, = t/2. Plot the
electric field at.z=0 for various values of wt between 0 and 27
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Now, suppose we have a photon of this elliptically polarized
light. How can we"r‘e'p're'sent this in our mathematical model
where photon states were unit vectors? Before we said that
any state could be written as | - |

a0+ B 90 fa]+ |B]*=1

But to fepresent an elliptically polérized photon, we somehow
want to add up these basis vecters ‘out of phase”. We will see
that the natural way to do thisistoletaand 8 be complex
numbers. But flrst we'd better review some things about

complex numbers.
Question 2

- a)You probably know that compiex numbers are numbers that we

can write as’
z=a+bi
where @ and b are real numbers and 7 is some magical number

with 1 x i =-1. This is enough information to add and multipl
any two complex numbers. As an example, calculate the

following:

(3+219)+(4+71) =

([3+ 1) x (1+{3 1)



In order to visualize complex numbers, it really helps to think of
them as points in a 2D plane, where the number 1 is at distance 1
along the horizontal axis and the number 1 is at distance 1 along
the vertical axis (figure 1).

Then adding complex numbers is

11 N just adding the vectors {figure 2).
ol eatbi SR : -
b : o To understand how to visualize
€ ™ 1 > multiplication, it is easiest to

think in terms of “polar
v - coordinates.”

In figure 3, we see that any.
complex number can also be

- described by giving its
MAGNITUDE r {the length from O
to z, also knowns as the

'MODULUS), and its PHASE (the

- angle & between the vector and
the “real axis”}). The product of
two complex numbers with polar

a coordinates (rq, 84) and (ry, 85} is

a complex number with polar

coordinates (r; - ry, 81 + 0,).

In other words, to multiply two complex numbers represented in
polar coordinates, we just multiply the magnitudes to get the
new magnitude and add the phases to get the new phase.




b) Exercise: suppose that z, =1+ {31 and zy =f§‘+ L. Then:
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81-1-62 =
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You already calculated (1 +,3 1) x (/3 + 7) = z; in part a. For this
number, what are r3 and 6;? \ - :

3z =
'_83=

Do you findr; =

r:r;and 8;=0; +6,?

c) A very important fact about complex numbers is that e 1% is a
complex number with magnitude 1 and phase 8. We can show

this by writing

Ne;
!‘“ eg
1. el® = 1470+ ((0)/2+(i6)/31+..
< /,9 '
N > =(1-0%/2+.)+1(0-6%/31 +.)
=cosB+1sin6
¥

Here, we have used the Taylor expansions of ex, cos(x), and

sin(x).
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This means that a complex number with magnitude r and phase 8 can

be writtenasz=re "= (rCOSB) + 2(rsin®)

3 T@w As an example, what are the real and
vesing 7 . 7 imaginary parts of 3¢ "7
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Question 3

BACK TO PHYSICS...

Complex numbers often appear in physics in discussions of waves. To

see how, consider a complex number that is a function of time:

2(t) = el(Dt

a) On the diagram below, show the path that z(t) traces out on the
complex plane and put arrows to show how it changes with time
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b) On the graph below, sketch the real and imaginary parts of z(t) using
a solid curve and a dashed curve respectively, and also plot the

magnitude of z: 4
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We sce that both parts of z(t) oscillate just like a wave, though the
magnitude stays constant.

¢) We can also use complex numbers to describe waves that oscillate in

ikx-mt)

space and time. If z(t) = ¢ , show on the graph below how the

real part of z depends on x at t=0 (solid) and at some slightly later time

(dashed). |
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Now let’s see what happens when we multiply this complex wave by an
overall complex number:

(=76 Kx-o

fZ=Ac ¢, check that the real part of z(t) becomes:

Re(z(t)) = A cos(kx - ot + ¢)

(kx-ot)

Thus, by multiplying the basic complex wave ¢ | by a general

complex number Z, we get a wave with an arbitrary amplitude and
phase. Representing waves as the real part of complex exponentials can
simplify a lot of calculations even when the imaginary part has no
physical meaning (see question 4 for an example). In quantum
mechanics, complex waves themselves are very important, and both
parts have physical meaning. '



It’s now easy to see why complex numbers will be useful in.
representing elliptically polarized light. We just notice that

_‘ ExX 0050‘3 -t + Cbxj‘!’ EY ; CDSO(Z et CP}D
= Re (B ™ B gt ity

" Re (241 2,5) ) L e

So that in the classical description, different polarizations of
light are in one-to-one correspondence with COMPLEX
SUPERPOSITIONS Z X + Z, Y. We can’t really draw such a vector
when Z,and Z, are not real, but the important thing is that the
information about the amplitudes and phases of the two
different components of the light are contained in the complex
numbers Z,and Z,. U | -
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So how do we represent a photon of this elliptically
- polarized light in our mathematical model? We just allow
complex superpositions of the eigenstates:

Z o>+ 2,14 where RS

When z; and z, have different phases, the state describes a
photon of elliptically polarized light. If the light is incident on a
0° polarizer, we still have the rule that the photon will pass
through with probability [z;]% but now the |z1| represents the
magnitude of the complex number z;

# This result +ha the most gpreral quantum states |
ave CoMPLEX SMQ’)(‘ZIfPOS?}‘:DAS ot the @{3%5";‘4’@@5 m
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Exercise: A photon in a state —ilo") +( % l% > is incident
on a 45° polarizer. What is the probability that it will go
? ‘
through: (l’\"“\’ %V’ij w e {o"} and. ho"> in terms o_g
the Qzﬂeﬂ&ﬂ{a A Ahe 450 ?"(arl%ar).



# This queston s ust about addl real wavwes 4 .
QUESTION 4 ? 0 b

L lex . . . .
Thls,\wgy of representing things is extremely useful when it

cames to adding up waves that are out of phase. For example,
if we have

h = Ajcos(kx—wt+dq)+A;cos(kx—wt+d,)

it’s not obvious how to find the amplitude of the resulting
wave. But using the complex number representation, we have:

o= Re(zle;'(kx—wt) +Zzei(kx—wt))
= Re((Zy+Zy)e (X7
o 6

whereZ;=A; e i and ;=AM e ac So _thé amplitude of the
resulting wave is just the magnitude of Z; + Z, and the phase is
the phase of Z; + Z,.

Example: we can write the sum of two waves
2cos{k x—w t) + cos(k x — w t +1t/3)

as Acostkx—wt+¢). What are Aand ¢?




