Food for thought:

$$100^{\circ}C$$
 Ikg $0^{\circ}C$ Ikg
 $c = 300 \frac{1}{k_{3} \cdot k}$ $c = 900 \frac{1}{k_{3} \cdot k}$

The final temperature will beA) 50°CB) Greater than 50°CC) Less than 50°C

Heat required to raise the temperature of a
material determined by its SPECIFIC HEAT C:
heat
added mass
Q = m c AT
OR:
Q = n C AT
moles Molar Specific HEAT
= Molar HEAT CAPACITY
C in
$$\frac{J}{kg \cdot K}$$
: energy required to heat 1 kg of
material by 1 K
C in $\frac{J}{mol \cdot K}$: energy required to heat 1 mole of
material by 1 K

Specific heat values

Table 17.3Approximate Specific Heats and Molar Heat Capacities
(Constant Pressure)

Substance	Specific Heat, <i>c</i> (J/kg·K)	Molar Mass, M (kg/mol)	Molar Heat Capacity, C (J/mol • K)
Aluminum	910	0.0270	24.6
Beryllium	1970	0.00901	17.7
Copper	390	0.0635	24.8
Ethanol	2428	0.0461	111.9
Ethylene glycol	2386	0.0620	148.0
Ice (near 0°C)	2100	0.0180	37.8
Iron	470	0.0559	26.3
Lead	130	0.207	26.9
Marble (CaCO ₃)	879	0.100	87.9
Mercury	138	0.201	27.7
Salt (NaCl)	879	0.0585	51.4
Silver	234	0.108	25.3
Water (liquid)	4190	0.0180	75.4

Phys157 Lecture 4

Why is heat copacity higher for some materials? temperature proportional to average kinetic energy of molecules

Demo:

https://www.youtube.com/watch?v=iWggUu31-Ys

Why is heat copacity higher for some materials? will see: temperature proportional to average kinetic energy of molecules

for more complicated materials, part of added energy added goes to rotations/vibrations etc..., so it takes more Q to increase the kinetic energy.

From PHET: states of matter simulation, https://phet.colorado.edu/sims/html/states-of-matter-basics/latest/states-of-matter-basics_en.html

An analogy:

Exercise: two objects with mass 1kg are put in thermal contact but insulated from their environment. If the initial temperatures are $T_1 = 100^{\circ}$ C and $T_2 = 0^{\circ}$ C, and the specific heats are $c_1 = 300$ J/kg·K and $c_2 = 900$ J/kg·K, calculate the final equilibrium temperature.

Exercise: two objects with mass 1kg are put in thermal contact but insulated from their environment. If the initial temperatures are $T_1 = 100^{\circ}$ C and $T_2 = 0^{\circ}$ C, and the specific heats are $c_1 = 300$ J/kg·K and $c_2 = 900$ J/kg·K, calculate the final equilibrium temperature.

Exercise: two objects with mass 1kg are put in thermal contact but insulated from their environment. If the initial temperatures are $T_1 = 100^{\circ}$ C and $T_2 = 0^{\circ}$ C, and the specific heats are $c_1 = 300 \text{ J/kg} \cdot \text{K}$ and $c_2 = 900 \text{ J/kg} \cdot \text{K}$, calculate the final equilibrium temperature.

Next: for each part, determine how much heat was added

Clicker: For the object initially at 100°C, the amount of heat added is

A)
$$Q_1 = 300 \text{ J/K} \cdot \text{T}$$

B) $Q_1 = 300 \text{ J/K} \cdot 100^{\circ}\text{C}$
C) $Q_1 = 300 \text{ J/K} \cdot (\text{T} - 100^{\circ}\text{C})$
D) $Q_1 = 300 \text{ J/K} \cdot (100^{\circ}\text{C} - \text{T})$
E) $Q_1 = 300 \text{ J/K} \cdot (\text{T} + 100^{\circ}\text{C})$

EXTRA: what is Q_2 ? How are Q_1 and Q_2 related? Why?

Discuss!

Clicker: For the object initially at 100°C, the amount of heat added is $Q = m \cdot c \cdot \Delta T$ m = /kgA) $Q_1 = 300 \text{ J/K} \cdot T$ $C_1 = 300 \text{ J/K} \cdot T$ B) $Q_1 = 300 \text{ J/K} \cdot 100^{\circ}\text{C}$ $\Delta T = T_{\text{funcl}} - T_{\text{initial}}$ C) $Q_1 = 300 \text{ J/K} \cdot (T - 100^{\circ}\text{C})$ $(T - 100^{\circ}\text{C})$ D) $Q_1 = 300 \text{ J/K} \cdot (100^{\circ}\text{C} - T)$ E) $Q_1 = 300 \text{ J/K} \cdot (T + 100^{\circ}\text{C})$ this will be negative

$$\frac{100^{\circ}C}{C_1 = 300 J_{kg} \cdot k}$$

$$\frac{100^{\circ}C}{C_2 = 900 J_{kg} \cdot k}$$

PHASES OF MATTER

- Take some molecules
- Put them in a container at some temperatures pressure
- Significant changes in configuration of molecules can occur as we vary T.P

PHASE DIAGRAM: displays phases and phase transition curves as a function of T and P

PHASE CHANGES:

- macroscopic properties change dramatically across phase boundary

- At transition temperature, transition occurs due to heat added/removed no temp. change ! - Amount of heat required for transition per
- Amount of heat required for transition per mass of material is LATENT HEAT latent heat Lf: of fusion (freezing/melting) Loiling, condensing)

The graph shows the temperature vs time in an experiment where heat is supplied to ice water at a power of 240W.

(1 Watt = 1 Joule / second).

Why does the graph look like this?

NEXT: How much ice was present initially?

A) 0.05kg B) 0.5kg C) 5kg D) 50kg

EXTRA: why is the graph curved?

EXTRA: why is the graph curved?

all liquid water, well mixed

poor mixing as ice melts, nonuniform temperature

ice/water 0°C

