Learning Goals

- Explain how the Kelvin scale is defined
- Describe the difference between a linear relationship and a proportional relationship
- Explain why different thermometers might be more appropriate in different situations (e.g. to measure the temperature of a small volume of liquid)
- Convert between Kelvin and Celsius temperatures
- Calculate the pressure in a constant volume gas thermometer at some temperature given the pressure at another temperature. Calculate the temperature given the pressure of an ideal gas thermometer and the pressure at some other temperature
- For an object made of some material, to calculate the changes in length that object undergoes in response to changes in temperature, given the initial length and thermal expansion coefficient

Defining temperature using constant volume gas thermometer

$P=$ Force on walls per unit area
constant
volume gas thermometer:

Simulation of an ideal gas: pressure is from the molecules hitting the wall!

As we heat the gas, the molecules move faster so Gas properties PHET from U. Colorado pressure increases.

$$
P=F / A
$$

Clicker question: In the picture below, box 2 is twice the height as box 1 , with twice the number of molecules, moving at the same average speed. Compared to the pressure on the left wall of box 1 , the pressure on the left wall in box 2 will be
A) the same.
B) half.
C) double.
D) None of the above.

EXTRA: if we double the average speed of the molecules, give

Two reasons why pressure would increase.

$$
P=\frac{F}{A}
$$

Clicker question: In the picture below, box 2 is twice the height as box 1 , with twice the number of molecules, moving at the same average speed. Compared to the pressure on the left wall of box 1 , the pressure on the left wall in box 2 will be
A) the same.

Force is double, but area is also double,
B) half.
so pressure is the same
2
C) double.
D) None of the above.

EXTRA:

constant volume gas thermometer:

Define Kelvin scale by:

depends on
particular themumeler
will discuss calibration later

Define Kelvin scale by:

constant volume gas thermometer:

$$
T=\underset{\uparrow}{\operatorname{const}} \times P
$$

and depends on particular thermometer

$$
T=273.16 \mathrm{~K}
$$

at triple point of water

Pressure vs Kelvin temperature for constant volume gas thermometers

Kelvin scale: P is Proportional to $T: P=m \cdot T$

Pressure vs Celcius temperature for constant volume gas thermometers

$$
* T_{k}=T_{c}+273.15 *
$$

Pressure vs Celcius temperature for constant volume gas thermometers

Celcins scale: P is LINEAR in $T_{c} P=m T_{c}+b$

$$
* T_{k}=T_{c}+273.15 *
$$

Clicker question: An ideal gas thermometer is calibrated by placing it in equilibrium with water at its triple point. The pressure reads 50 kPa . The same thermometer is placed in equilibrium with another container of water. If the
 pressure reads 100 kPa , we can say that the temperature of the water is
A) 136.58 K
B) 273.16 K
C) 546.32 K
D) 373.00 K
E) We need to know the constant of proportionality between T and P to
 answer this.

Clicker question: An ideal gas thermometer is calibrated by placing it in equilibrium with water at its triple point. The pressure reads 50 kPa . The same thermometer is placed in equilibrium with another container of water. If the
 pressure reads 100 kPa , we can say that the temperature of the water is
A) 136.58 K
B) 273.16 K
(C) 546.32 K
D) 373.00 K
E) We need to know the constant of proportionality between T and P to answer this.

$$
\text { if } T=C \cdot P \text { then: }
$$

$$
T_{1}=c P_{1} \quad T_{2}=c P_{2} \text { so } \frac{T_{1}}{T_{2}}=\frac{P_{1}}{P_{2}}
$$

Clicker: A $0.010 \mathrm{~m}^{3}$ rigid container of gas has a pressure of 1.0 kPa at $20.0^{\circ} \mathrm{C}$. The pressure at $120.0^{\circ} \mathrm{C}$ is closest to:
A. 0.2 kPa
B. 1.3 kPa
C. 3.0 kPa
D. 6.0 kPa
E. There is not enough information to answer.
$T_{\text {celcins }}$ defined as $T_{\text {kelvin }}+273.15$

$$
T_{\text {Fahroaneit }} \text { defined as } \frac{9}{5} T_{\text {celcins }}+32
$$

Clicker: A $0.010 \mathrm{~m}^{3}$ rigid container of gas has a pressure of 1.0 kPa at $20.0^{\circ} \mathrm{C}$. The pressure at $120.0^{\circ} \mathrm{C}$ is closest to:

$$
/ / T_{c}+273.15
$$

$$
\begin{aligned}
& \text { (B. } \frac{\text { B. } 1.3 \mathrm{kPa}}{\text { C. } 3.0 \mathrm{kPa}} \\
& \text { D. } 6.0 \mathrm{kPa}
\end{aligned} \quad \frac{P_{2}}{P_{1}}=\frac{\left(T_{\text {kelvin }}\right)_{2}}{\left(T_{\text {kelvin }}\right)_{1}} \approx \frac{4}{3}
$$

E. There is not enough information to answer.
T is not proportional to P if we use the Cekins scale!

Liquid or gas thermometers
(a) Changes in temperature cause
the liquid's volume to change.

(b) Changes in temperature cause the pressure of the gas to change.

Thermometers

this one doesn't

Bimetal
(a) A bimetallic strip

(b) The strip bends when its temperature is raised.
(c) A bimetallic strip used in a thermometer heed to be in equilibrium with

Phys 157 lecture 3
the sample

Thermal expansion

(a)

Thermal expansion:

Thermal expansion: Verrazano Narrows Bridge

How much longer will the bridge deck be during the summer compared to the winter?
(center span $\sim 1300 \mathrm{~m}$, think order of magnitude)
A. 5 mm
B. 5 cm
C. 50 cm
D. 5 m
E. 50 m
$\alpha \sim 1 \cdot 10^{-5} \mathrm{~K}^{-1}$

$$
\Delta L=\alpha L_{0} \Delta T
$$

Thermal expansion io charges in k Verrazano Narrows Bridge changes in ${ }^{\circ} \mathrm{C}$
How much longer will the bridge deck be during the summer compared to the winter?
(center span $\sim 1300 \mathrm{~m}$, think order of magnitude)
A. 5 mm we only need to pe accurate with in a factor of 10
B. $5 \mathrm{~cm} \Delta T=50 \mathrm{C}^{\circ}=50 \mathrm{~K}$
C. $50 \mathrm{~cm}\left(-15^{\circ} \mathrm{C}\right.$ winter $\begin{array}{l}\left.35^{\circ} \mathrm{C} \text { summer) }\right)\end{array}$
D. $5 \mathrm{~m} \quad L_{0}=1300 \mathrm{~m} \approx 10^{3} \mathrm{~m}$
E. $50 \mathrm{~m} \alpha=10^{-5} \mathrm{~K}^{-1}$
$\alpha \sim 1 \cdot 10^{-5} \mathrm{~K}^{-1}$
$\Delta L \approx 10^{-5} \times 10^{3} \mathrm{~m} \times 50=0.5 \mathrm{~m}$

$$
\Delta L=\alpha L_{0} \Delta T
$$

Extra clicker question: At 200K, the pressure of a (nearly) ideal gas in a sealed fixed volume container is 50 kPa . The container is now placed in an oven and the pressure is observed to increase to 100 kPa . The temperature of the oven is
A) 100 K
B) 200 K
C) 300 K
D) 400 K
E) We need to know the constant of proportionality between T and P to answer this.

Clicker question: At 200K, the pressure of a (nearly) ideal gas in a sealed fixed volume container is 50 kPa . At 400 K , the pressure will be
A) 25 kPa
B) 50 kPa

$$
\text { means } \frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}}=2
$$

C) 100 kPa

$$
T=\text { Const } \cdot P
$$

$$
\text { so } P_{2}=2 \cdot 50 \mathrm{KPa}=100 \mathrm{kP}
$$

D) we need to know the constant of proportionality between T and P to answer this

We say T is directly proportional to P

