Office hours today: after class in Remo, 4-5pm, 8-9pm in Zoom

Homework sessions: M/Tu 5-8pm in Remo

Learning goals for today:

To determine the time constant and/or damping constant given a description of the motion of a damped oscillator.

To explain qualitatively the physical effects of different amounts damping, including critical damping

To explain how the amplitude of a driven oscillation depends on the driving frequency and to describe the phenomenon of resonance.

Last time in Phys 157 ...

The graph shows displacement vs time for a damped oscillation. The time constant t_0 in this case is nearest to

A) 1s B) 3s C) 5s D) 7s E) 9s

EXTRA: Can you find t₀ exactly?

The graph shows displacement vs time for a damped oscillation. The time At to, ampl. should be $\frac{8m}{e} \approx \frac{8cm}{2.718} \approx 3m$ constant t_0 in this case is nearest to

E)9s

A) 1s B) 3s C) 5s D) 7s

EXTRA: Can you find t_o exactly?

The graph shows displacement vs time for a damped oscillation. The time constant t₀ in this case is nearest to $A = 8 \cdot e^{-t/4}$

A) 1s B) 3s C) 5s D) 7s

EXTRA: Can you find t₀ exactly?

$$F(-5) = -55 \mathcal{A}_{0}$$

$$F(-5) = -55 \mathcal{A}_{0} = -\frac{55}{4} = -\frac{5}{4} =$$

Forces that lead to damping are velocity dependent to opposite direction to velocity.

Example: drag forces from air/fluids

Example: viscons fluid drag , damping cons	tant
$F_{\rm D} = -\dot{b}v$	
$F_{NET} = -kx - bv$	
Equations of $\frac{dx}{dt} = v$ motion:	use these to predict how X and
This is $a = \frac{E}{m} - \frac{av}{dt} = -\frac{k}{m}x - \frac{E}{m}v$	v change with time

$$\frac{dx}{dt} = v \qquad \frac{dv}{dt} = -\frac{k}{m}x - \frac{k}{m}v$$

Solution is:

$$X(t) = A_o e^{-\frac{t}{t_o}} \cos(\omega t + \phi)$$
 check: calculate
 $V = \frac{dx}{dt}$ and then
verify 2nd eqn.

Simulation or demo of damped oscillation

https://youtu.be/-ALSLYnSOYE

no damping (idealized situation)

 $b = 0.5 \times 2 J km$

 $b = 2\sqrt{km} \Rightarrow \omega = 0$ pure decay, no oscillations

Overdamping: b>2,1km

also exponential decay, but slower to reach equilibrium than critical damping

An object with mass 2kg oscillates on a spring with a small amount of damping.

- a) What is the damping constant b?
- EXTRA: What is the spring constant k?

$$t_{o} = \frac{2m}{b}$$
$$\omega = \sqrt{\frac{k}{m} - \frac{b^{2}}{4m^{2}}}$$

An object with mass 2kg oscillates on a spring with a small amount of damping.

- a) What is the damping constant b?
- EXTRA: What is the spring constant k?

skp 2: find b:

$$t_0 = \frac{2m}{b} = b = \frac{2m}{t_0} = \frac{4kg}{7.85s}$$

 $= 0.51 \frac{kg}{5}$

An object with mass 2kg oscillates on a spring with a small amount of damping.

All object with mass zig oscillates of	a spring with a small amount of damping.
a) What is the damping constant b?	$rachep 1: find \omega$ $T = 2s so \omega = \frac{2\pi}{T} = 3.1s^{-1}$ $chep 1: have \omega = \sqrt{\frac{k}{T}} = \frac{5\pi}{T}$
EXTRA: What is the spring constant k?	$F = bk = m\omega^2 + \frac{b^2}{4m} \leftarrow ignore here$
★ accurate to just use w= J highly damp	$\frac{1}{m} \text{ unless} = 19.2 \frac{N}{m} + 0.03 \frac{N}{m} \approx 19.2 \frac{N}{m}$

FORCED OSCILLATIONS: We can add in an oscillating force by hand: $F = F_0 \cos(\omega_0 t)$ 1 driving frequency: we choose this

object will end up oscillating at driving frequency but
 ★ amplitude largest if w_D matches w_o = √^E/_m

- This is RESONANCE

Objects with the masses shown each sit in equilibrium on different springs, all with spring constant 200 N/m and damping constant 1 kg/s. If we turn on a driving force with frequency $f = 1.59 \text{ s}^{-1}$, which mass will oscillate with the largest amplitude?

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

Objects with the masses shown each sit in equilibrium on different springs, all with spring constant 200 N/m and damping constant 1 kg/s. If we turn on a driving force with frequency $f = 1.59 \text{ s}^{-1}$, which mass will oscillate with the largest amplitude?

1.1

B) 2

C) 3

D) 4

E) 5

Have
$$f_{D} = |.59 \text{ s}^{-1}$$

so $\omega_{D} = 2\pi f_{D} \approx 10 \text{ s}^{-1}$
Want this to match
 $\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{100N}{m}}$
so $m = 2 \text{ kg works.}$