Office hours today: after class in Remo, 4-5pm, 8-9pm in Zoom

Homework sessions: M/Tu 5-8pm in Remo

Learning goals for today:
To determine the time constant and/or damping constant given a description of the motion of a damped oscillator. To explain qualitatively the physical effects of different amounts damping, including critical damping To explain how the amplitude of a driven oscillation depends on the driving frequency and to describe the phenomenon of resonance.

Last time in Phys 157...

Exponential decay:

- when amplitude/energy decreases by fixed fraction each period

time constant $=$ time before amplitude is $\frac{1}{e} \times$ initial amplitude

Damped oscillations

The graph shows displacement vs time for a damped oscillation. The time constant t_{0} in this case is nearest to
A) 1 s
B) 3 s
C) 5 s
D) 7 s
E) 9 s

EXTRA: Can you find t_{0} exactly?

The graph shows displacement vs time for a damped oscillation. The time constant t_{0} in this case is nearest to
A) 1 s
B) 3 s
C) 5 s
D) 7 s
E) 9 s

At to, ampl. should be $\frac{8 \mathrm{~m}}{e} \approx \frac{8 \mathrm{~cm}}{2.718} \approx 3 \mathrm{~m}$

EXTRA: Can you find t_{0} exactly?

The graph shows displacement vs time for a damped oscillation. The time constant t_{0} in this case is nearest to

$$
A=8 \cdot e^{-t / t_{0}}
$$

A) 1 s
B) 3 s
C) 5 s
D) 7 s
E) 9 s

EXTRA: Can you find t_{0} exactly?

$$
\begin{aligned}
& \Rightarrow e^{-5 s / t_{0}}=\frac{1}{2} \\
& \Rightarrow-\frac{5 s}{t_{0}}=\ln \left(\frac{1}{2}\right) \\
& \Rightarrow t_{0}=
\end{aligned}
$$

Forces that lead to damping are velocity dependent o opposite direction to velocity.
examples:

friction

drag forces in air or fluids

Example: drag forces from air/fluids

Example: viscous fluid drag damping constant

$$
\begin{aligned}
F_{D} & =-b v \\
F_{N E T} & =-k x-b v
\end{aligned}
$$

Equations of $\quad \frac{d x}{d t}=V$
use these to predict motion: how x and \checkmark change with time
This is $a=\frac{F}{m} \rightarrow \frac{d v}{d t}=-\frac{k}{m} x-\frac{b}{m} v$

$$
\frac{d x}{d t}=v \quad \frac{d v}{d t}=-\frac{k}{m} x-\frac{b}{m} v
$$

Solution is:

$$
x(t)=A_{0} e^{-\frac{t}{t_{0}}} \cos (\omega t+\phi)
$$

check: calculate $v=\frac{d x}{d t}$ and then verity 2ndeqn.

$$
t_{0}=\frac{2 m}{b} \quad \omega=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}
$$

${ }^{C}$ can usually ignore valid for $b<2 \sqrt{\mathrm{~km}}$

Simulation or demo of damped oscillation
https://youtu.be/-ALSLYnSOYE
no damping (idealized situation)

still have $\omega \approx \omega_{b=0}=\sqrt{\frac{k}{m}}$

Critical damping

$b=2 \sqrt{k m} \Rightarrow \omega=0$ pure decay, no oscillations

Overdamping: $b>2 \sqrt{k m}$

also exponential decay, but slower to reach equilibrium than critical damping

An object with mass 2 kg oscillates on a spring with a small amount of damping.
a) What is the damping constant b?

EXTRA: What is the spring constant k ?

$$
\begin{gathered}
t_{0}=\frac{2 m}{b} \\
\omega=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}
\end{gathered}
$$

An object with mass 2 kg oscillates on a spring with a small amount of damping.
a) What is the damping constant b?

EXTRA: What is the spring constant k ?
step 2 : find b :

$$
\begin{aligned}
t_{0}=\frac{2 m}{b} \Rightarrow b=\frac{2 \mathrm{~m}}{t_{0}} & =\frac{4 \mathrm{~kg}}{7.85 \mathrm{~s}} \\
& =0.51 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{aligned}
$$

An object with mass 2 kg oscillates on a spring with a small amount of damping.
a) What is the damping constant b?
step 1: find $\omega \quad T=2$ s so $\omega=\frac{2 \pi}{T}=3.1 \mathrm{~s}^{-1}$

EXTRA: What is the spring constant k ? step 2: use $\omega=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}} \pi}$ we can

* accurate to just use $\omega=\sqrt{\frac{k}{m}}$ un less highly damped.
$\Rightarrow k=m \omega^{2}+\frac{b^{2}}{4 m} \longleftarrow$ ignore these

$$
=19.2 \frac{\mathrm{~N}}{\mathrm{~m}}+0.03 \frac{\mathrm{~N}}{\mathrm{~m}} \approx 19.2 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

Forced oscillations:
We can add in an oscillating force by hand:

- object will end up oscillating at driving frequency but * amplitude largest if ω_{D} matches $\omega_{0}=\sqrt{\frac{k}{m}}$
- This is Resonance

Objects with the masses shown each sit in equilibrium on different springs, all with spring constant $200 \mathrm{~N} / \mathrm{m}$ and damping constant $1 \mathrm{~kg} / \mathrm{s}$. If we turn on a driving force with frequency $\mathrm{f}=1.59 \mathrm{~s}^{-1}$, which mass will oscillate with the largest amplitude?
A) 1
B) 2
C) 3
D) 4
E) 5

Objects with the masses shown each sit in equilibrium on different springs, all with spring constant $200 \mathrm{~N} / \mathrm{m}$ and damping constant $1 \mathrm{~kg} / \mathrm{s}$. If we turn on a driving force with frequency $f=1.59 \mathrm{~s}^{-1}$, which mass will oscillate with the largest amplitude?
A) 1

$$
\text { Have } f_{D}=1.595^{-1}
$$

B) 2

$$
\text { so } \omega_{D}=2 \pi f_{D} \approx 10 \mathrm{~s}^{-1}
$$

C) 3

Want this to match

$$
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{200 N / m}{m}}
$$

D) 4
so $m=2 \mathrm{~kg}$ works.
E) 5

