Office hours today: after class (Remo), 3:30-4:30pm (Zoom)

Learning goals for today:

- Describe how kinetic and potential energy vary with time during simple harmonic motion.
- To use conservation of energy to predict amplitude and/or maximum velocity from the displacement and velocity at any given time.
- To describe the relation between the amplitude of an oscillator and the energy stored in the system.
- To explain how oscillating systems losing a fixed fraction of their energy to the environment per oscillation can be described by oscillations with an exponential decaying amplitude

Last time in Physics 157...

Energy in S.H.M.
Kinetic energy

$$
K \cdot E=\frac{1}{2} M v^{2}
$$

Potential Energy relative to equilibrium:
Mr om mam

$$
\text { PIE. }=\frac{1}{2} k(\Delta x)^{2}
$$

Energy in simple harmonic motion:
A mum: Energy at B or C relative to mass at equilibrium:
B •rmicic $\rightarrow V_{\text {max }}$

$$
\frac{1}{2} M v_{\text {max }}^{2}
$$

C ${ }^{k}$ Murre \quad Rewrite in terms of k and A :
D אֹmm

$$
V_{\text {max }}=A \omega=A \sqrt{\frac{K}{M}}
$$

Energy in simple harmonic motion:
A rm En M: Energy at B or C relative to mass at equilibrium:
B •rmicim $\rightarrow V_{\text {max }}$

$$
\frac{1}{2} M v_{\text {max }}^{2}
$$

C $\boldsymbol{r c m a r m}_{\vec{M}}^{\vec{M}}$ Rewrite in terms of k and A :
ค

$$
\begin{gathered}
V_{\text {max }}=A \omega=A \sqrt{\frac{k}{M}} \\
\frac{1}{2} M V_{\text {max }}^{2}=\frac{1}{2} M \times\left(A \times \sqrt{\frac{k}{m}}\right)^{2}=\frac{1}{2} k A^{2}\left[\begin{array}{l}
\text { this must } \\
\text { be the } \\
\text { oftyula for } \\
\text { potential energy } \\
\text { when } \Delta x=A^{2}
\end{array}\right.
\end{gathered}
$$

Total energy is conserved $\frac{1}{2} M v^{2}+\frac{1}{2} k x^{2}=E$	constant equal to initial energy
potential energy	

A 0.5 kg mass is attached to a horizontal spring of spring constant $200 \mathrm{~N} / \mathrm{m}$. If the spring is initially compressed by 0.1 m , and the mass is then released, what is the speed of the block when the spring is at its equilibrium length?
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$
E. $5 \mathrm{~m} / \mathrm{s}$

A 0.5 kg mass is attached to a horizontal spring of spring constant $200 \mathrm{~N} / \mathrm{m}$. If the spring is initially compressed by 0.1 m , and the mass is then released, what is the speed of the block when the spring is at its equilibrium length?
Δx
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$
E. $5 \mathrm{~m} / \mathrm{s}$

Energy conserved: $\frac{1}{2} M v^{2}=\frac{1}{2} k(\Delta x)^{2} \Rightarrow v=\sqrt{\frac{k}{m}} \cdot \Delta x=2 \mathrm{~m} / \mathrm{s}$

The two graphs show different oscillations for the same system. Compared with the first case, the total potential plus kinetic energy in the second case is
A) The same
B) Twice as big
C) Half as big
D) One quarter as big
E) One $16^{\text {th }}$ as big

for each: energy same at all times. Look at time when $V=0$.
The two graphs show different oscillations for the same system. Compared with the first case, the total potential plus kinetic energy in the second case is Then $E=\frac{1}{2} k A^{2}$ so $\frac{E_{2}}{E_{1}}=\frac{A_{2}^{2}}{A_{1}^{2}}=1$
$\begin{array}{llll}\text { A) The same } & \text { B) Twice as big } & \text { C) Half as big } & \text { D) One quarter as big } \\ \text { E) One } 16^{\text {th }} \text { as big }\end{array}$

Key fact about oscillating systems:
Energy is proportional to amplitude squared

Real oscillators: energy is lost

amplitude decreases with time

What fraction of the original kinetic + potential energy remains in the oscillator at $t=5 \mathrm{~s}$?
A) All of it.
B) Half of it.
C) One quarter of it.
D) $1 / \sqrt{2}$ of it.

EXTRA: what fraction of the energy at $\mathrm{t}=5 \mathrm{~s}$ remains at $\mathrm{t}=10 \mathrm{~s}$?

What fraction of the original kinetic + potential energy remains in the oscillator at $\mathrm{t}=5 \mathrm{~s}$?
A) All of it.
B) Half of it.
C) One quarter of it.
D) $1 / \sqrt{2}$ of it.

EXTRA: what fraction of the energy at $\mathrm{t}=5 \mathrm{~s}$ remains at $\mathrm{t}=10 \mathrm{~s}$?

$$
\frac{1}{4}
$$

Common situation: amplitude decreases by same fraction each full oscillation
A

Common situation: amplitude decreases by same fraction

Exponential decay: Amplitude is $A_{0} \times \frac{1}{e^{n}}$ where n is \# multiples of t_{0}.

Exponential decay: Amplitude is $A_{0} \times \frac{1}{e^{n}}$ where n is \# multiples of to.

$$
\underbrace{\substack{A=A_{0} e^{-1}}}_{t_{0}} \underset{\substack{n=\frac{t}{t_{0}}}}{s_{0}: e_{0}^{-2}}
$$

Damped oscillations

The graph shows displacement vs time for a damped oscillation. The time constant t_{0} in this case is nearest to
A) 1 s
B) 3 s
C) 5 s
D) 7 s
E) 9 s

EXTRA: Can you find t_{0} exactly?

The graph shows displacement vs time for a damped oscillation. The time constant t_{0} in this case is nearest to

At $t=0, x=8 \mathrm{~cm}$. At $t=2 \mathrm{~s}, x=6 \mathrm{~cm}$.
A) 1 s
B) 3 s
C) 5 s
D) 7 s
E) $9 \mathrm{~s} \quad 6 \mathrm{~cm}=8 \mathrm{~cm} \times e^{-}$ $-\frac{(2 s)}{t_{0}}$

EXTRA: Can you find t_{0} exactly?

$$
\begin{aligned}
& \Rightarrow e^{-2 s} t_{0}=0.75 \\
& \Rightarrow-\frac{2 s}{t_{0}}=\ln (0.75) \\
& \Rightarrow t_{0} \approx 7 \mathrm{~s}
\end{aligned}
$$

EXTRA: An object with mass 2 kg oscillates on a spring with a small amount of damping.
Roughly what fraction of the energy is lost in one complete oscillation?
A) 6%
B) 12%
C) 23%
D) 40%
E) 72%

An object with mass 2 kg oscillates on a spring with a small amount of damping. ≈ 0.6
Roughly what fraction of the energy is lost in one complete oscillation?
so 40% has
A) 6%
B) 12%
C) 23%
D) 40%
E) 72% been lost

