Last time in Physics 157...

When we heat/cool an object, we are adding/removing energy at the molecular level:

Macroscopic properties change as objects ave heated/cooled.

Clicker question: Two objects (each initially in equilibrium) are put into thermal contact and the pair is thermally insulated from its environment. If heat is observed to flow from object A to object B we can say that:
A) Object A initially had more energy than object B .
B) Object A initially had a higher temperature than object B.
C) Both A and B are true.
D) Neither A nor B can be concluded from the question.

Clicker question: Two objects (each initially in equilibrium) are put into thermal contact and the pair is thermally insulated from its environment. If heat is observed to flow from object A to object B we can say that:
A) Object A initially had more energy than object B er small hot
B)) object A initially had a higher temperature than object B .

$$
\begin{aligned}
& \text { This is one of the defining } \\
& \text { properties of temperature }
\end{aligned}
$$ (see next slide)

D) Neither A nor B can be concluded from the question.

If we bring two objects in contact:

either:
no HEAT flows
11 objects are in EQUILIBRIUM

11
objects have same TEMPERATURE

or:

thermal energy is transferred

HEAT flows from object with higher temperature to objed with lower temperature

How can we assign a number to temperature?

We can assign a numerical value for different temperatures by using some temperaturedependent macroscopic property of a standard object (egg. volume of liquid in a tube)

Discussion question

While trying to find a cheap copy of the 157 text online, you notice that Amazon has a sale on (liquid) thermometers for only 79 cents each. It seems like a really good deal, so you order six (Christmas is coming up). When they arrive, you realize that none of them have any markings on them.()

Just as you are about to send them back, you develop a powerful feeling that you really really want to know what temperature it is in the room. How could you figure out the temperature (in degrees Celcius) using your cheapo Amazon thermometers?

EXTRA: will your method give the exact temperature? Why or why not? Are you assuming anything?

One way: Let it ore to equilibrium w. billing water, Mark $100^{\circ} \mathrm{C}$

Let it come to equilibrium w. melting ice, Mark $0^{\circ} \mathrm{C}$
Place equally spaced markings between 0 and $100^{\circ} \mathrm{C}$ and label these with the intermediate temperatures

Bonus clicker question: The graph shows the volume vs temperature relationship for a sample of mercury. For a mercury thermometer with equally spaced temperature markings, if the thermometer reads $50^{\circ} \mathrm{C}$, the actual temperature is
A) Exactly $50^{\circ} \mathrm{C}$.
B) A bit higher than $50^{\circ} \mathrm{C}$.
C) A bit lower than $50^{\circ} \mathrm{C}$.

Clicker question: The graph shows the volume vs temperature relationship for a sample of mercury. For a mercury thermometer with equally spaced temperature markings, if the thermometer reads $50^{\circ} \mathrm{C}$, the actual temperature is
A) Exactly $50^{\circ} \mathrm{C}$.
B) A bit higher than $50^{\circ} \mathrm{C}$.
C) A bit lower than $50^{\circ} \mathrm{C}$.

Many materials \longrightarrow Many possible definitions of T.

Simplest is based on the simplest material: ideal gas

11 molecules with neglig: b le interaction (good approx. at low density)

Look at changes in pressure for fixed volume
let's remember what pressure means...

constant volume gas thermometer:

$$
\begin{aligned}
& \text { Pressure }= \begin{array}{l}
\text { Force on wall } \\
\text { per unit area }
\end{array} \\
& P=\begin{array}{ll}
\frac{F}{A} & \begin{array}{l}
\text { S.I. unit: } \\
\text { Pascal } \\
\\
\\
\end{array}
\end{array}
\end{aligned}
$$

Clicker question: The air pressure in the room is about 100 kPa . The force of the air on the top of your head (say 10 cm by 10 cm) is similar to the downward force from
A) a 100 g mass
B) a 1 kg mass
C) a 10 kg mass
D) a 100 kg mass
E) a 1000 kg mass

Clicker question: The air pressure in the room is about 100 kPa . The force of the air on the top of your head (say 10 cm by 10 cm) is similar to the downward force from
A) a 100 g mass
B) a 1 kg mass
C) a 10 kg mass
D) a 100 kg mass
E) a 1000 kg mass

$$
\begin{aligned}
F & =P \cdot A \\
& =100,000 \mathrm{~Pa}_{a} \times 0.01 \mathrm{~m}^{2} \\
& =1000 \mathrm{~N}
\end{aligned}
$$

same as from a look mass:

$$
\begin{aligned}
F & =m g \\
& =1000 \mathrm{~N}
\end{aligned}
$$

DEMO: (try this at home!)

cup of

water

easily holds up the water!

What is really holding the water up?

Simulation of an ideal gas: pressure is from the molecules hitting the wall!

As we heat the gas, the molecules move faster so Gas properties PHET from U. Colorado pressure increases.

constant volume gas thermometer:

Define Kelvin scale by:

depends on
particular themumeler
will discuss calibration later

