Office hours today: after class in Remo
Reminder: quiz Thursday (entropy and oscillations)
Learning goals for today:
To predict the equilibrium position of a system by calculating the various contributions to net force and requiring that the net for vanishes.

To predict the oscillation frequency of a system given the net force as a function of position or given physical information that permits the calculation of net force as a function of position.

Last time in Phys 157..


A 1 kg mass sits on a spring with $\mathrm{k}=1000 \mathrm{~N} / \mathrm{m}$. If we add another 1 kg mass on top, the amount by which the equilibrium position changes is:
A) 1 cm
B) 2 cm
C) 10 cm
D) 1 m
E) It can't be determined without knowing the unstretched length of the spring.


At equilibrinm, compression of the spring is doternined by

$$
F_{N E T}=0
$$

$$
m g=k x
$$

A 1 kg mass sits on a spring with $k=1000 \mathrm{~N} / \mathrm{m}$. If we add another 1 kg mass on top, the amount by which the equilibrium position changes is about:
A) 1 cm
B) 2 cm
C) 10 cm
D) 1 m
E) It can't be determined without knowing the unstretched length of the spring.
With different masses, $i_{1}^{1 k g}=k x_{1}$ and $m_{2}^{2 k g} g=k x_{2}$, so when we add the extra mass, $\Delta m \cdot g=k \cdot \Delta x$. Thus: $\Delta x=\frac{\Delta m g}{k}$ $=1 \mathrm{~cm}$


Discussion question: A 10 cm long spring has a spring constant of $20 \mathrm{~N} / \mathrm{m}$. If we attach a 100 g weight to the spring and release it, what will be the amplitude of the resulting oscillation?


Discussion question: A 10 cm long spring has a spring constant of $20 \mathrm{~N} / \mathrm{m}$. If we attach a 100 g weight to the spring and release it, what will be the amplitude of the resulting oscillation?
A) 1 cm
B) 2 cm
C) 3 cm
D) 4 cm
E) 5 cm



Middle position is equilibrium position, so $F_{N \in T}=m g-K A=0$ here.

$$
A=\frac{m g}{k}=\frac{1 \mathrm{~N}}{50 \mathrm{~N} / \mathrm{m}}=2 \mathrm{~cm}
$$

How to find $\omega$ in examples:
(1) Find $F_{\text {NET }}$ as a function of position $x$
(2) Find equilibrium value $x_{e q}$ by solving $F_{\text {NET }}\left(x_{e q}\right)=0$.
(3) $-k$ is $F_{\text {NET }}^{\prime}\left(x_{\text {eq }}\right)$, the slope at $X_{\text {eq }}$.
(4) Then $\omega=\sqrt{\frac{k}{m}}$


Example: air leg

- used to isolate sensitive equipment from vibration.

assume: any motion of piston is slow so compression/expansion is isothermal

Example: air leg

a) Draw a free body diagram for the object of mass $M$ showing the vertical forces.
b) Calculate the magnitude of the net upwards force on the object as a function of the height $h$ of the piston.

Your answer should be a function of $h$

Example: air leg


$$
\begin{aligned}
P_{0} & =100 \mathrm{kPa} \\
M & =200 \mathrm{~kg} \\
g & \approx 10 \mathrm{~m} / \mathrm{s}^{2} \\
A & =0.03 \mathrm{~m}^{2} \\
T & =300 \mathrm{~K} \\
n \cdot R & =5 \mathrm{~J} / \mathrm{k}
\end{aligned}
$$

a) Draw a free body diagram for the object of mass M showing the vertical forces.

b) Calculate the magnitude of the net $F_{\text {air }}=P_{0} A \quad F_{g}=m g$ upwards force on the object as a function of the height $h$ of the piston.

Have: $P=\frac{n R T}{V}=\frac{n R T}{A \cdot h}$

$$
\begin{gathered}
\text { so } F_{\text {gas }}=P A=\frac{n R T}{h} \\
F_{\text {NET }}^{u p}=\frac{n R T}{h}-P_{0} A-m g=\frac{1500 \mathrm{~J}}{h}-5000 \mathrm{~N}
\end{gathered}
$$

Example: air leg

c) Graph this upward force as a function of $h$, for positive values of $h$ up to the height of the object.

Example: air leg

c) Graph this upward force as a function of $h$, for positive values of $h$ up to the height of the object.

$$
\xrightarrow[-5000 \mathrm{~N} \ldots \ldots \ldots]{F_{\text {NET }}=1500 \mathrm{~J} \cdot \frac{1}{h}-5000 \mathrm{~N}, \ldots \ldots} h
$$

Example: air leg

d) What is the equilibrium height of the piston?
e) What is the oscillation frequency $f$ ?

Example: air leg

d) What is the equilibrium height of the piston?

equilibrium height: $F_{\text {NET }}=0$

$$
h_{e q}=0.3 \mathrm{~m}
$$

e) What is the oscillation frequency $f$ ?
h


$$
F_{\text {NET }}=\frac{1500 \mathrm{~J}}{h}-5000 \mathrm{~N}
$$

$$
k=-\frac{d F}{d h} \text { at } h_{e q}=\frac{1500 \mathrm{~J}}{h_{e q}^{2}}=1.67 \times 10^{4} \mathrm{~N} / \mathrm{m}
$$

$$
\rightarrow \omega=\sqrt{\frac{k}{m}}=9.1 \mathrm{~s}^{-1} \quad f=\frac{\omega}{2 \pi}=1.45 \mathrm{~s}^{-1}
$$

