Office hours today: after class (Remo)
4-5pm, 8-9pm (Zoom)
Remo homework sessions: 5-8pm Monday and Tuesday

Learning goals for today:

- To qualitatively and quantitatively relate the position vs time, velocity vs time, and acceleration vs time for simple harmonic motion.
- To deduce the constant k characterizing the restoring forces based on the observations of simple harmonic motion given the mass.

Simple Harmonic Motion $\uparrow_{\underline{k}}$

$$
x(t)=A \cos (\omega t+\phi)
$$

~ำ $\xrightarrow{\stackrel{x}{\rightarrow}}$

$$
\omega=\sqrt{\frac{k}{m}}
$$

How to find ϕ

$$
\phi=\frac{\llcorner }{\leftarrow} \frac{\text { to the left }}{2 \pi \times \frac{\text { shift }}{\text { period }}} \begin{aligned}
& \text { to the right }
\end{aligned}
$$

A mass on a spring is struck with a hammer, giving it an initial downward velocity when it is at its equilibrium position. Which of the following functions could describe the motion of the mass?
A) $x(t)=A \cos (\omega t-\pi / 2)$
B) $x(t)=A \cos (\omega t)$
C) $x(t)=A \cos (\omega t+\pi / 2)$
D) $x(t)=A \cos (\omega t+\pi)$
E) None of the above

$$
\text { Hint: sketch the graph of } x(t)
$$

EXTRA: can you determine A in terms of v_{0} and ω ?
 after $t=0, x$ decreases until some min. value, then comes back up tho $_{0} x=0$ but with tee velocity. So x then increases above 0 , etc..

A mass on a spring is struck with a hammer, giving it an initial downward velocity when it is at its equilibrium position. Which of the following functions could describe the motion of the mass?
A) $x(t)=A \cos (\omega t-\pi / 2)^{\circ}$
B) $x(t)=A \cos (\omega t)$
C) $x(t)=A \cos (\omega t+\pi / 2)$
D) $x(t)=A \cos (\omega t+\pi)$
E) None of the above

EXTRA: can you determine A in terms of v_{0} and ω ?
\longrightarrow velocity is $\frac{x}{d t}=-A \omega \sin \left(\omega t+\frac{\pi}{2}\right)$. At $t=0, v=-v_{0}, s_{0}:-v_{0}=-A \omega \sin \left(\frac{\pi}{2}\right) \Rightarrow A=\frac{v_{0}}{\omega}$

Velocity vs displacement

A plot of displacement as a function of time for an oscillator is shown above. Which of the diagrams to the right describes the velocity as a function of time for the same motion?
A.

B.

C.

D.

E.

Velocity from displacement:

$$
\begin{gathered}
V=\frac{d x}{d t} \\
V(t)=\text { slope of } x(t) \\
\text { at time } t
\end{gathered}
$$

Position:

$$
x(t)=A \cos (\omega t+\phi)
$$

$$
\downarrow \frac{d}{d t} \quad \text { (slope) }
$$

Velocity:

Acceleration:

$$
\begin{aligned}
& v(t)=-A \omega \sin (\omega t+\phi) \\
& \int \frac{d}{d t}(\text { slope })
\end{aligned}
$$

$$
a(t)=-A \omega^{2} \cos (\omega t+\phi)
$$

$$
-\omega^{2} \times(t)
$$

$$
\begin{aligned}
& x(t)(\mathrm{cm}) \\
& x(t)=A \cos (\omega t+\phi) \\
& \omega=\frac{2 \pi}{T}
\end{aligned}
$$

For the displacement graph shown, what is the maximum magnitude of velocity, in cm / s ?
A) 4
B) 2
C) 1
D) $1 / 2$
E) $1 / 4$
$x(t)(\mathrm{cm})$

$$
\omega=\frac{2 \pi}{T}
$$

$$
x(t)=A \cos (\omega t+\phi)
$$

$$
\begin{aligned}
v & =\frac{d x}{d t} \\
& =-A \omega \sin (\omega t+\phi)
\end{aligned}
$$

For the displacement graph shown, what is the maximum magnitude of velocity, in cm / s ?
\sin goes from -1 to 1 , so
A) 4
B) 2
C) 1
D) $1 / 2$
max value of v is
E) $1 / 4$

Aw

$$
A=2 \mathrm{~cm}, \omega=\frac{2 \pi}{T}=\frac{2 \pi}{8 \pi}=\frac{1}{4} \quad A \omega=\frac{1}{2}
$$

Acceleration vs displacement:

A plot of upward acceleration (in cm / s) as a function of time (in s) is shown above for a mass hanging from a spring. Which of the pictures to the right could represent $x(t)$?

Q
C C
D

E

Acceleration vs displacement:

A plot of upward acceleration (in cm / s) as a function of time (in s) is shown above for a mass hanging from a spring. Which of the pictures to the right could represent $x(t)$?
Have $a=-\omega^{2} \times$ for SHM, so x is maximum when a is minimmon

Position:

$$
x(t)=A \cos (\omega t+\phi)
$$

$$
\downarrow \frac{d}{d t} \quad \text { (slope) }
$$

Velocity:

Acceleration:

$$
\begin{aligned}
& v(t)=-A \omega \sin (\omega t+\phi) \\
& \int \frac{d}{d t}(\text { slope })
\end{aligned}
$$

$$
a(t)=-A \omega^{2} \cos (\omega t+\phi)
$$

$$
-\omega^{2} \times(t)
$$

The graphs show acceleration as a function of time for two different harmonic oscillators. The amplitude of the displacement in the first case is 1 cm . For the second oscillator, the amplitude of the displacement is
A) 4 cm
B) 2 cm
C) 1 cm
D) 0.5 cm
E) 0.25 cm

The graphs show acceleration as a function of time for two different harmonic oscillators. The amplitude of the displacement in the first case is 1 cm . For the second oscillator, the amplitude of the displacement is
A) 4 cm
B) 2 cm
C) 1 cm
D) 0.5 cm
E) 0.25 cm

Have $a=-\omega^{2} x$, so $x=-\frac{a}{\omega^{2}}$. T is half in and
case so ω is double, so amplitude of x is $\frac{1}{4}$

$$
\phi= \pm 2 \pi \frac{t_{\text {max }}}{T} \quad \omega=\sqrt{\frac{k}{m}} \quad x(t)=A \cos (\omega t+\phi) \quad \omega=\frac{2 \pi}{T}
$$

Approximately what is the spring constant of the spring in the simulation?
see: https://youtu.be/PD30ieYknac
A) $1 \mathrm{~N} / \mathrm{m}$
B) $2 \mathrm{~N} / \mathrm{m}$
C) $4 \mathrm{~N} / \mathrm{m}$
D) $8 \mathrm{~N} / \mathrm{m}$
E) $16 \mathrm{~N} / \mathrm{m}$

$$
\phi= \pm 2 \pi \frac{t_{\text {max }}}{T} \quad \omega=\sqrt{\frac{k}{m}} \quad x(t)=A \cos (\omega t+\phi) \quad \omega=\frac{2 \pi}{T}
$$

Approximately what is the spring constant of the spring in the simulation?
A) $1 \mathrm{~N} / \mathrm{m}$
B) $2 \mathrm{~N} / \mathrm{m}$
C) $4 \mathrm{~N} / \mathrm{m}$
D) $8 \mathrm{~N} / \mathrm{m}$
E) $16 \mathrm{~N} / \mathrm{m}$
have: $T=1.5 \mathrm{~s}$ so $\omega=\frac{2 \pi}{T} \approx 4.2 \mathrm{~s}^{-1}$

$$
\text { Using } \omega=\sqrt{\frac{k}{m}} \text { have: } k=m \omega^{2}=0.25 \times(4.2)^{2} \mathrm{~N} / m \approx 4 \mathrm{~N} / \mathrm{m}
$$

EXTRA: Simple Harmonic Motion:

EXTRA: what does $x(t)$ look like?

Simple Harmonic Motion:

EXTRA: what does $x(t)$ look like?

