Office hours today: 4-5pm (Zoom), 8-9pm (Zoom) **Midterm Q&A**: 5-7pm (Zoom link on main Canvas page)

Learning Goals for Today:

- To define what is meant by mechanical equilibrium
- To explain the idea of restoring forces for a system perturbed from a stable mechanical equilibrium situation and how these lead to periodic oscillations
- To explain why Hooke's law applies in general for mechanical systems that are slightly displaced from a stable equilibrium configuration
- To mathematically describe the displacement vs time for mechanical system oscillating under the influence of restoring forces obeying Hooke's law
- To relate the parameters appearing in the sinusoidal function describing an oscillation to the physical properties of the oscillation, including the period, frequency, amplitude, and phase

PHYSICS 157 PART I : OSCILLATIONS & WAVES

MECHANICAL EQUILIBRIUM: occurs when forces (and torques) Fgas on each part of the system add to zero

example: $\vec{F}_{gas} + \vec{F}_{gravity} + \vec{F}_{air} = 0$ - piston is in equilibrium

What happens to the forces if we move the piston downward a little (assume the cylinder is insulated)?

A) $|F_{gas}|$ increases a little while the other forces remain the same.

B) $|F_{gas}|$ increases a little and $|F_{air}|$ increases to compensate.

C) $|F_{gas}|$ decreases a little and the other forces remain the same.

D) $|F_{gas}|$ decreases a little and $|F_{air}|$ decreases to compensate.

E) Nothing: all forces remain the same.

What happens to the forces if we move the piston downward a little (assume the cylinder is insulated)?

A) |F_{gas}|increases a little while the other forces remain the same.

B) $|F_{gas}|$ increases a little and $|F_{air}|$ increases to compensate.

C) $|F_{gas}|$ decreases a little and the other forces remain the same.

Adiabatic compression: PVX = unst VI so PT so Fair T D) $|F_{gas}|$ decreases a little and $|F_{air}|$ decreases to compensate.

E) Nothing: all forces remain the same.

gravity 6 outside air pressure remain constant

What happens to the forces if we move the piston upward a little (assume the cylinder is insulated)?

A) $|F_{gas}|$ increases a little while the other forces remain the same.

B) $|F_{gas}|$ increases a little and $|F_{air}|$ increases to compensate.

C) $|F_{gas}|$ decreases a little and the other forces remain the same.

D) $|F_{gas}|$ decreases a little and $|F_{air}|$ decreases to compensate.

E) Nothing: all forces remain the same.

What happens to the forces if we move the piston upward a little (assume the cylinder is insulated)?

A) $|F_{gas}|$ increases a little while the other forces remain the same.

B) $|F_{gas}|$ increases a little and $|F_{air}|$ increases to compensate.

C) |F_{gas}| decreases a little and the other forces remain the same.

D) |F_{gas}| decreases a little and |F_{air}| decreases to compensate.

E) Nothing: all forces remain the same.

Adiabatic expansion PJ s. Faas

RESTORING FORCES: For a STABLE equilibrium configuration, a displacement in one direction leads to a net force in the other direction.

e.g.

equilibrium

This leads to OSCILLATIONS = periodic motion

Demo

Exercise: For the system shown, sketch a graph of the net upward force on the piston as a function of the displacement Δx from the equilibrium position.

EXTRA: what does your graph look like if you zoom in to the region of small Δx . Can you write down an equation that describes F vs Δx in this region?

Oscillations with Hooke's Law: Newton: $a = \frac{E}{m}$

F=-KX

Oscillations with Hooke's Law: Newton: $a = \frac{E}{m} = -\frac{K}{m} \times \frac{K}{m}$

F=-KX

Solution is $x(t) = A\cos(\omega t + \phi)$ with $\omega = \sqrt{\frac{k}{m}}$

A plot of *displacement* (in cm) as a function of time (in s) is shown above. What are the *period* and *amplitude* of this simple harmonic motion?

A) T = 1s, A = 2cm B) T = 2s, A = 2cm C) T = 4s, A = 2cm D) T = 2s, A = 1cm E) T = 4s, A = 1cm

EXTRA: what is w?

A plot of *displacement* (in cm) as a function of time (in s) is shown above. What are the *period* and *amplitude* of this simple harmonic motion?

A) T = 1s, A = 2cm B) T = 2s, A = 2cm C) T = 4s, A = 2cm D) T = 2s, A = 1cm E) T = 4s, A = 1cm

EXTRA: what is w?

A plot of *displacement* (in cm) as a function of time (in s) is shown above. Which function below describes this motion?

A) x(t) = cos(t)B) x(t) = cos(4t)C) $x(t) = cos(2 \pi t)$ D) $x(t) = cos(\pi t)$ E) $x(t) = cos(\pi/2 t)$

A plot of *displacement* (in cm) as a function of time (in s) is shown above. Which function below describes this motion?

period of cos is
$$2\pi$$

graph is $\cos(\omega t)$: when $t=4s$,
graph goes back to 1, so must
have $\omega t = 2\pi$ here.
$$\omega = \frac{2\pi}{4s} = \frac{\pi}{2} s^{-1}$$

FREQUENCY & PERIOD

$$\begin{aligned}
& angular \\
& frequency \\
& X(t) = Acos(\omega t + \phi) \\
& Period T : time from max \rightarrow max \\
& T = \frac{2\pi}{\omega} since cos repeats every 2\pi. \\
& Frequency f: oscillations per time f = \frac{1}{T} \\
& gives: \omega = 2\pi f
\end{aligned}$$