Last time in Physics 157... (and last weekend at Mark's house)

Why does heat always flow from hot objects to colder objects?

Why can't we make a refrigerator that requires no work done?

Why can't we make an engine that converts heat completely into work?

If we start here and wait....
we never see this

we always move toward a configuration like this:

Why?

10^{500} configurations like this

10^{530} configurations like this
(10^{5} possible pixel locations for each frog)

If we start here and wait....

10^{30} times more likely to end up in configuration like this:

Analogy:
Frogs = energy
Conserved t move randomly

$$
\underset{\text { density of }}{\text { frogs }}=\frac{\text { temperature }}{\text { den }}
$$

$$
\uparrow
$$

proportional to energy per molecule

If we start here:

$10^{1000000000000000000000000}$
times more likely to end up here.

Define ENTROPY of a macroscopic configuration

distribution of frogs

Te.g.2: gas with pressure P, volume V, temperature T

$$
S=\text { const } x \log \left[\begin{array}{l}
N \\
N_{n}
\end{array}\right]
$$

number of microscopic
configurations of this type
examples of $(0,5)$ frog configurations:

2ND LAW of THERMODYNAMICS:
Total entropy never decreases.
\rightarrow probability of decrease is unimaginably small

Entropy is additive (= "extensive")

$$
S_{\text {TOTAL }}=S_{1}+S_{2}
$$

(because

$$
\begin{aligned}
& \log \left(N_{1} x N_{2}\right) \\
& \left.=\log \left(N_{1}\right)+\log \left(N_{2}\right)\right)
\end{aligned}
$$

EnTROPY: macroscopic definition

Amazing result:
we can prove this from the microscopic definition of S. * see bonus video https://www.youtube.com/watch?v=t7gyi8NhgYg

Suppose that we had 1J of energy flow from the cold object to the hotter object. What would be the change in entropy of the whole system?
A) $-0.0125 \mathrm{~J} / \mathrm{K}$
B) $-0.0075 \mathrm{~J} / \mathrm{K}$
C) 0
D) $0.0075 \mathrm{~J} / \mathrm{K}$
E) $0.0125 \mathrm{~J} / \mathrm{K}$

$$
d S=\frac{d Q}{T}
$$

Suppose that we had 1J of energy flow from the cold object to the hotter object. What would be the change in entropy of the whole system?

$$
\text { Have } d S=d S_{1}+d S_{2}
$$

A) $-0.0125 \mathrm{~J} / \mathrm{K}$
B) $-0.0075 \mathrm{~J} / \mathrm{K}$

$$
=\frac{d Q_{1}}{T_{1}}+\frac{d Q_{2}}{T_{2}}
$$

C) 0
D) $0.0075 \mathrm{~J} / \mathrm{K}$
E) $0.0125 \mathrm{~J} / \mathrm{K}$

$$
=\frac{-1 J}{100 K}+\frac{1 J}{400 K}
$$

$$
\text { BAD } d S=\frac{d Q}{T}
$$

violates Ind Law so wont happen

2ND LAW of THERMODYNAmICS:
Total entropy never decreases. \rightarrow probability of decrease is too small to comprehend

30°
70°

In the cycle shown, we can say that from c-> a,
A) The entropy increases
B) The entropy is constant
C) The entropy decreases

$$
d s=\frac{d Q}{T}
$$

In the cycle shown, we can say that from c-> a,
A) The entropy increases
B) The entropy is constant
C) The entropy decreases
$c \rightarrow a$ adiabatic so $Q=0$
$d Q=0$ for each part so $d S=0$

$$
d S=\frac{d Q}{T}
$$

In the cycle shown, heat Q enters the gas in the isothermal step a -> b at temperature T. The entropy change during this step
A) is equal to Q / T.
$B)$ is equal to $Q^{2} /(2 T)$.
C) Is equal to 0 .
D) is equal to $-Q / T$.
E) cannot be determined from the information provided.

$$
d S=\frac{d Q}{T}
$$

> Tconst. so
$\Delta S=\frac{Q}{T}$

In the cycle shown, heat Q enters the gas in the isothermal step a -> b at temperature T . The entropy change during this step
A) is equal to Q / T.
B) Is equal to 0 .
C) is equal to $-Q / T$.
D) cannot be determined from the information provided.

$$
d S=\frac{d Q}{T}
$$

In the cycle shown, the change in entropy for the system around a complete cycle is
A) Positive
B) Zero
C) Negative

$$
d S=\frac{d Q}{T}
$$

In the cycle shown, the change in entropy for the system around a complete cycle is
A) Positive
S is a state variable.
B) Zero
C) Negative

Around a whole cycle, we come back to the same state.
So $\Delta S=0$.

$$
d S=\frac{d Q}{T}
$$

Entropy is a state variable - like P, v, T, u

ΔS same for all paths, zero for cycle. But: S for environment usually increases!

EXTRA PROBLEM: 1 moles of ideal monatomic gas is cooled at constant volume from 300 K to 200 K . What is the change in entropy?

Hint: this is something like calculating work when pressure is changing.

$$
d S=\frac{d Q}{T}
$$

1 moles of ideal monatomic gas is cooled at constant volume from 300 K to 200 K . What is the change in entropy?

Hint: this is something like calculating work when pressure is changing.

Have: constant volume $\Rightarrow W=0$

$$
\begin{aligned}
& \Rightarrow d Q=d u=n C_{V} d T \\
& \Rightarrow d S=n C_{V} \frac{d T}{T} \quad \text { for each inftiritesinad } \\
& \text { part. }
\end{aligned}
$$

Now we add he parts:

$$
\begin{aligned}
\Delta S & =n C_{v} \int_{T_{i}}^{T_{f}} \frac{d T}{T} \\
& =n C_{v} \ln \left(\frac{T_{f}}{T_{i}}\right) \\
& =\frac{3}{2} n R \ln \left(\frac{T_{f}}{T_{i}}\right)
\end{aligned}
$$

