Office hours today:

- After class in Remo
- $4-5 \mathrm{pm}, 8$-9pm in Zoom

Learning goals:

- For isochoric, isobaric, isothermal, and adiabatic processes, to calculate final temperatures, pressures, and volumes given initial temperatures, pressures and volumes
- For isochoric, isobaric, isothermal, and adiabatic processes, to calculate work done, change in internal energy, and heat added during the process
- Describe qualitatively the difference between adiabatic and isothermal compression and distinguish the graphs of these processes on a PV diagram

Last time in Physics 157...

Constant Volume:

$$
\begin{aligned}
& \text { Ideal gas law } \Rightarrow \frac{T_{2}}{T_{1}}=\frac{P_{2}}{P_{1}} \\
& W=0 \text { so } \\
& Q=\Delta U=n C_{V} \Delta T
\end{aligned}
$$

 "isochoric"

Constant Pressure

$$
\text { Ideal Gas Law } \Rightarrow \frac{T_{2}}{T_{1}}=\frac{V_{2}}{V_{1}}
$$

$$
\begin{gathered}
W=P \Delta V \\
Q={ }_{n} C_{p} \Delta T \\
\uparrow C_{v}+R
\end{gathered}
$$

"isobaric"

Constant Temperature

Ideal GasLaw $\Rightarrow P V=$ cons.
so $P \propto \frac{1}{V}$

$$
\begin{gathered}
\Delta U=0 \\
Q=W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \\
\int_{V_{i}}^{V_{f}} P(V) d V
\end{gathered}
$$

"isothermal"

Gas in a perfectly insulated cylinder is compressed. During this process, we can say that

A) Q is positive and $\Delta T=0$.
B) $Q=0$ and ΔT is positive.
C) $Q=0$ and ΔT is negative.
D) $\mathrm{Q}=0$ and $\Delta \mathrm{T}=0$.
E) Q is positive and ΔT is positive.

Gas in a perfectly insulated cylinder is compressed. During this process, we can say that

A) Q is positive and $\Delta \mathrm{T}=0$.
B) $\mathrm{Q}=0$ and $\Delta \mathrm{T}$ is positive.
C) $Q=0$ and ΔT is negative.
D) $\mathrm{Q}=0$ and $\Delta \mathrm{T}=0$.

Have: $\Delta u=-w$
E) Q is positive and ΔT is positive.
W-re (compression)
so $\Delta U>0 \quad \Delta U={ }_{n} C_{v} \Delta T$ so $\quad \Delta T>0$
Intuitively: we are doing work 6 adding enersy to gas, so T ?

Adiabatic processes: $Q=0$

2 cases: © gas is well-insulated from environment.
(2) process happens very quickly, so not enough time for significant heat transfer

Adiabatic: $Q=0$
First Law: $\Delta U=-W$
 compressed gas heats up!

$$
{ }_{n} C_{v} \Delta T=-W
$$

Ideal gas law: $\frac{P V}{T}$ constant.
Combining these, can show $P V^{\gamma}=$ constant

$$
\gamma=\frac{C_{p}}{C_{V}} \underset{\substack{1 \\ \text { see } \\ \text { video } \\ \text { derivation }}}{\substack{\text { n }}}
$$

ADIABATIC: $Q=O$ (insulated or very fast)

$$
\begin{aligned}
& \text { First Law: } \Delta U=-W \\
& \text { compressed gas heats up! } \\
& { }_{n} C_{v} \Delta T=-W \\
& 1+\text { ideal gas law } \\
& \frac{P V}{T} \text { constant } \\
& P V^{\gamma}=\text { constant } \\
& T V^{\gamma-1}=\text { constant } \\
& { }^{\circ} \text { see } 19.8 \\
& \begin{array}{l}
\text { or video } \\
\text { derivation }
\end{array} \\
& \gamma=\frac{C_{p}}{C_{V}}
\end{aligned}
$$

In the two processes shown, gas is compressed adiabatically in one case and isothermally in the other. We can say that
A) The solid line represents the isothermal process
B) The solid line represents the adiabatic process
C) We don't have enough information to tell which process is which.

EXTRA: Can you give a conceptual explanation for your answer?

Method 1:
$P \propto \frac{1}{V}$ for isothermal
$P \propto \frac{1}{V^{\gamma}}$ for adiabatic

In the two processes shown, gas is compressed adiabatically in one case and isothermally in the other. We can say that
A) The solid line represents the isothermal process
B) The solid line represents the adiabatic process
C) We don't have enough information to tell which process is which.
$\gamma>1$ so P increases more quickly as \checkmark decreases

EXTRA: Can you give a conceptual explanation for your answer?
conclusion: adiabatic is solid

Method 2:

- same final volume
- higher T
higher final P for adiabatic
Answer is

$$
\underline{B}
$$

Gas with $C_{V}=3 R$, initially at room temperature, is compressed very rapidly in a cylinder. The compression ratio is 15 .
a) Estimate the final temperature of the gas.
b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Gas with $C_{V}=3 R$, initially at room temperature, is compressed very rapidly in a cylinder. The compression ratio is 15 .
a) Estimate the final temperature of the gas.

The final temperature of the gas is
A) $293 \mathrm{~K} \cdot(15)^{5 / 3}$
B) $293 \mathrm{~K} \cdot(15)^{4 / 3}$
C) $293 \mathrm{~K} \cdot(15)$
D) $293 \mathrm{~K} \cdot(15)^{2 / 3}$
E) $293 \mathrm{~K} \cdot(15)^{1 / 3}$

Gas with $C_{V}=3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The compression ratio is 15 .
a) Estimate the final temperature of the gas.
b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Have $T V^{\gamma-1}$ constant

$$
\gamma=\frac{C_{p}}{C_{v}}=\frac{C_{v}+R}{C_{v}}
$$

$T_{2} V_{2}^{\gamma-1}=T_{1} V_{1}^{\gamma-1}$ $=\frac{4 R}{3 R}=\frac{4}{3}$

$$
\begin{aligned}
T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} & =293 k \cdot(15)^{\frac{1}{3}} \\
& =723 \mathrm{~K}
\end{aligned}
$$

Demo!
https://youtu.be/9iXLeD5eV9g
https://youtu.be/e39qy5flzpU

Gas with $C_{V}=3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The compression ratio is 15 .
a) Estimate the final temperature of the gas.
b) If the tube contains $\mathbf{0 . 0 0 0 4}$ moles of gas, how much work was required to compress the gas?

Gas with $C_{V}=3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The compression ratio is 15 .
a) Estimate the final temperature of the gas.
b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Have $Q=0$ so:

$$
\Delta u=-W_{\text {gas }}=W_{\text {dime on gas }}
$$

$$
\text { So work dore equals } \begin{aligned}
\Delta u & =n C_{v} \Delta T \\
& =0.0004 \cdot 3 \cdot 8.31 \cdot 430 \mathrm{~J} \\
& =4.3 \mathrm{~J}
\end{aligned}
$$

What are you trying to calculate? n : use $P V=n R T$ T, V, or P : use $\frac{P V}{T}=$ const
adiabatic: also have $T V^{\gamma-1}=$ canst

$$
P V^{\gamma}=\text { const }
$$

ΔU : have $\Delta U={ }_{n} C_{v} \Delta T$ always
W or Q : have $W=P \Delta V$ constr P

$$
W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \text { const } T
$$

all others: use $Q=\Delta U+W$ (gives $Q={ }_{n} C_{p} \Delta T$ cons P)

