Office hours today:

- After class in Remo
- 4-5pm, 8-9pm in Zoom

Learning goals:

- For isochoric, isobaric, isothermal, and adiabatic processes, to calculate final temperatures, pressures, and volumes given initial temperatures, pressures and volumes
- For isochoric, isobaric, isothermal, and adiabatic processes, to calculate work done, change in internal energy, and heat added during the process
- Describe qualitatively the difference between adiabatic and isothermal compression and distinguish the graphs of these processes on a PV diagram

CONSTANT VOLUME:

Edeal gas law
$$\Rightarrow T_2 = P_2$$

 $T_1 = P_1$
 $W = 0$ so
 $Q = \Delta U = nC_v \Delta T$

"isochoric"

CONSTANT PRESSURE Ideal Gas Law => $\frac{T_2}{T_1} = \frac{V_2}{V_1}$

 $W = P \Delta V$ $Q = n C_P \Delta T$ $\int_{C_V + R}$

"isobaric"

CONSTANT TEMPERATURE

Ideal GasLaw
$$\Rightarrow$$
 PV = const.
so $P \propto \frac{1}{V}$

 $\Delta U = 0$

 $Q = W = nRT \ln \left(\frac{V_f}{V_i}\right)$ $\int_{V_f}^{V_f} P(v) dv$

"isothermal"

Gas in a perfectly insulated cylinder is compressed. During this process, we can say that

- A) Q is positive and $\Delta T = 0$.
- B) Q = 0 and ΔT is positive.
- C) Q = 0 and ΔT is negative.
- D) Q =0 and ΔT =0.
- E) Q is positive and ΔT is positive.

Adiabatic processes: Q=0

ADIABATIC: Q = O

First Law: $\Delta U = -W$ compressed gas heats up! $nC_v \Delta T = -W$

Combining these, can
show
$$PV^8 = constant$$

 $\chi = \frac{C_P}{C_V}$ see
video
derivation

ADIABATIC: Q = O (insulated or very fast)

First Law: $\Delta U = -W$ compressed gas heats up! $nC_v \Delta T = -W$	I
+ ideal gas law <u>PV</u> constant	
$PV^8 = constant$ $TV^{8-1} = constant$	ł
$\chi = \frac{C_P}{C_V}$ $\kappa \text{ see } 19.8$ $\sigma \text{ video}$ $\sigma \text{ video}$ $\sigma \text{ video}$	~

In the two processes shown, gas is compressed adiabatically in one case and isothermally in the other. We can say that

- A) The solid line represents the isothermal process
- B) The solid line represents the adiabatic process
- C) We don't have enough information to tell which process is which.

EXTRA: Can you give a conceptual explanation for your answer?

In the two processes shown, gas is compressed adiabatically in one case and isothermally in the other. We can say that

- The solid line represents the isothermal process B) The solid line represents the adiabatic process
- C) We don't have enough

EXTRA: Can you give a conceptual explanation for your answer? conclusion: adiabatic is solid

Gas with $C_v = 3 R$, initially at room temperature, is compressed very rapidly in a cylinder. The **compression ratio** is 15.

- a) Estimate the final temperature of the gas.
- b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Gas with $C_v = 3 R$, initially at room temperature, is compressed very rapidly in a cylinder. The **compression ratio** is 15.

a) Estimate the final temperature of the gas.

The final temperature of the gas is

- A) $293K \cdot (15)^{5/3}$ B) $293K \cdot (15)^{4/3}$ C) $293K \cdot (15)$ D) $293K \cdot (15)^{2/3}$
- E) 293K \cdot (15)^{1/3}

Gas with $C_v = 3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The **compression ratio** is 15.

- a) Estimate the final temperature of the gas.
- b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas? $y = \frac{C_r}{C_r} = \frac{C_r + R}{C_r}$ Have TV^{y-1} constant $T_2V_2^{y-1} = T_1V_1^{y-1}$ $= \frac{4R}{3R} = \frac{4}{3}$ $T_2 = T_1\left(\frac{V_1}{V_2}\right)^{y-1} = 293k \cdot (15)^{\frac{1}{3}}$ = 723K

Demo!

https://youtu.be/9iXLeD5eV9g

https://youtu.be/e39qy5flzpU

Gas with $C_v = 3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The **compression ratio** is 15.

- a) Estimate the final temperature of the gas.
- b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Gas with $C_v = 3 R$, initially at room temperature and atmospheric pressure, is compressed very rapidly in a cylinder. The **compression ratio** is 15.

- a) Estimate the final temperature of the gas.
- b) If the tube contains 0.0004 moles of gas, how much work was required to compress the gas?

Have Q = 0 so: $\Delta M = -Wgas = W_{date} = \sigma_{gas}$ So work done equals $\Delta M = n C_V \Delta T$ = 0.0004.3.831.430J= 4.3J

What are you trying to calculate? n: use PV=nRT
T, V, or P: use
$$\frac{PV}{T} = const$$

adiabatic: also have $TV^{8^{-1}} = const$
PV* = const

$$\Delta U$$
: have $\Delta U = n C_r \Delta T$ always

Wor Q: have
$$W = P \Delta V \operatorname{const} P$$

 $W = nRT \ln \left(\frac{V_{f}}{V_{i}}\right) \operatorname{const} T$

all others: use $Q = \Delta U + W$ (gives $Q = nC_p \Delta T$ const P)