Office hours today:

- after class (Remo)
- 3:30-4:30pm (Zoom)

Learning Goals for today:

- To calculate heat added to a gas by making use of the First Law of Thermodynamics (via a calculation of work and internal energy).
- To calculate changes in P, V, T, U, W, and Q for processes involving constant pressure, constant volume, constant temperature or zero heat exchange (i.e. adiabatic processes).

Last time in Physics 157...

Analyzing Thermodynamic Processes

By Gonfer - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=10901965

Ideal Gas Law

$$
P V=n R T
$$

\rightarrow use to calculate P, V, T, n given others

Calculating work:

$$
W=P \Delta V
$$

(or area under $P-V$ curve)
Calculating change in U :

$$
\Delta u={ }_{n} C_{v} \Delta T
$$

FIRST LAW:

$$
\Delta u=Q-w
$$

often used to find Q

The graph shows three possible processes for an ideal gas going from A to B. For which path is Q (the heat added) the largest?

Hint: Use the First Law of Thermodynamics.
A) Path 1
B) Path 2
C) Path 3
D) They are all the same.
E) We don't have enough information to answer.

The graph shows three possible processes for an ideal gas going from A to B. For which path is Q (the heat added) the largest?

Hint: Use the First Law of Thermodynamics.

$$
\longrightarrow Q=\Delta u+w
$$

A) Path 1
ΔU is the same (last question)
B) Path 2 W largest for path 1 (largest
C) Path 3 area under the graph)
D) They are all the same.
E) We don't have enough information to answer.

In the process 4, the pressure increases from 100 kPa to 250 kPa . If the initial temperature is 400 K , the final temperature is
A) 160 K
B) 400 K
C) 600 K
D) 800 K
E) 1000 K

In the process 4, the pressure increases from 100 kPa to 250 kPa . If the initial temperature is 400 K , the final temperature is
A) 160 K
ideal gas law:

$$
P V=n R T
$$

B) 400 K
\Uparrow constant n
C) 600 K
$\frac{P V}{T}$ constant
D) 800 K

1 constant V
E) 1000 K

$$
\frac{P}{T} \text { constant }
$$

$$
\frac{T_{2}}{T_{1}}=\frac{P_{2}}{P_{1}}=2.5
$$

During process 4, we can say that

$$
\text { A) } Q=W
$$

B) $Q=\Delta U$
C) $\Delta U=-W$
D) None of the above

During process 4, we can say that
A) $Q=W$

1 st law:
B) $Q=\Delta U$

$$
\Delta u=Q-W
$$

C) $\Delta U=-W$
D) None of the above
for constant volume, $W=0$
so $\Delta u=Q$

Constant Volume:

$$
\begin{aligned}
& \text { Ideal gas law } \Rightarrow \frac{T_{2}}{T_{1}}=\frac{P_{2}}{P_{1}} \\
& W=0 \text { so } \\
& Q=\Delta U=n C_{V} \Delta T
\end{aligned}
$$

 "isochoric"

In the two situations below, a gas is heated from 300K to 400K. We can say that the heat added
A) is the same in both cases.
B) is greater in the first case where the volume is held fixed.

C) is greater in the second case where pressure is fixed.

In the two situations below, a gas is heated from 300 K to 400 K . We can say that the heat added
A) is the same in both cases.
B) is greater in the first case where the volume is held fixed.
C) is greater in the second case where pressure is fixed.

Hst law: $Q=\Delta u+w$
ΔU same for both
W re for and case so Q larger for 2 nd case

Heat for Constant Pressure

$$
\begin{aligned}
& Q=\Delta U+W_{r^{\prime} \Delta v} \\
& { }_{n} C_{v} \Delta T \quad{ }_{n R \Delta T}
\end{aligned}
$$

so $Q=n \cdot\left(C_{v}+R\right) \cdot \Delta T$
Define $C_{p}=C_{v}+R$
Final result: $Q=n C_{p} \Delta T$

Constant Pressure

$$
\text { Ideal Gas Law } \Rightarrow \frac{T_{2}}{T_{1}}=\frac{V_{2}}{V_{1}}
$$

$$
\begin{gathered}
W=P \Delta V \\
Q={ }_{n} C_{p} \Delta T \\
\uparrow C_{v}+R
\end{gathered}
$$

"isobaric"

Gas in a cylinder is slowly expanded while in contact with a heat reservoir so that its temperature remains constant. During this process, we can say that
A) Both Q and ΔU are 0 .
const $T \Rightarrow \Delta u=0$
B) Q is 0 and ΔU is positive.
W is positive (expansion)
C) Q is 0 and ΔU is negative.

Est law: $\Delta u=Q-W$
D) ΔU is 0 and Q is positive so $Q=W>0$
E) ΔU is 0 and Q is negative

Which graph could represent the expansion of an ideal gas at constant temperature?

(A)

\uparrow this looks like the $\frac{1}{x}$ function.

Which graph could represent the expansion of an ideal gas at constant temperature?

Have

$$
\begin{aligned}
& P V=n R T \\
& R_{\text {constant }}
\end{aligned}
$$

So:

$$
P=\frac{\text { constant }}{V}
$$

Constant Temperature
Ideal GasLaw $\Rightarrow P V=$ const.

so $P \propto \frac{1}{V}$

$$
\begin{aligned}
& \Delta U=0 \\
& Q=W=\underset{\text { area under }}{\Delta u r v e \ldots}
\end{aligned}
$$

Work for constant temperature:

$$
W=\int_{V_{i}}^{V_{4}} P(V) d V
$$

${ }^{(1)}$ Find $P(V)$: Ideal Gas Law gives:

$$
P(V)=\frac{n R T}{V}
$$

(2) Find $F(V)$ with $F^{\prime}(v)=P(V)$

Can choose: $F(v)=n R T \ln (v)$
(3) Calculate $F\left(V_{f}\right)-F\left(V_{i}\right)$ Get:

$$
\begin{aligned}
W & =n R T \ln V_{f}-n R T \ln \left(V_{i}\right) \\
& =n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
\end{aligned}
$$

Constant Temperature

Ideal GasLaw $\Rightarrow P V=$ cons.
so $P \propto \frac{1}{V}$

$$
\begin{gathered}
\Delta U=0 \\
Q=W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \\
\int_{V_{i}}^{V_{f}} P(V) d V
\end{gathered}
$$

"isothermal"

