Office hours today: after class (Remo)
4-5pm, 8-9pm (Zoom)

Learning Goals for today

- Decide when the work done by a gas is positive or negative
- Calculate work done by a gas in a process given how the pressure changes with volume during a process
- Relate the work done by a gas to the area under the curve describing the process on a PV diagram
- Explain why the work done by a gas plus the work done by the environment of the gas (external forces) should add to zero
- Explain what is meant by the internal energy of a gas
- Calculate the change in internal energy for a gas given the change in temperature

The first Law of Thermodynamics = Conservation of energy

WORK: transfer of energy via mechanical process

work done by system

$$
\begin{gathered}
\downarrow \\
\text { Force }
\end{gathered}
$$

exerted by in direction of force

- assumes constant force

A gas with pressure P is in a cylinder with a piston of area A .
A little man pushes the piston and moves it by a small amount d. If the pressure remains approximately constant during this time, the work W done by the gas in this process is:
A) $\mathrm{W}=0$: the little man is doing the work.
B) W is positive and equal to $P \mathrm{Ad}$
C) W is negative and equal to - P Ad
D) Not enough information to answer.

A gas with pressure P is in a cylinder with a piston of area A .
A little man pushes the piston and moves it by a small amount d. If the pressure remains approximately constant during this time, the work W done by the gas in this process is:
A) $\mathrm{W}=0$: the little man is doing the work.
B) W is positive and equal to $P \mathrm{Ad}$
C) W is negative and equal to - P Ad
D) Not enough information to answer.

A gas with pressure P is in a cylinder with a piston of area A. A little man pushes the piston and moves it by a small amount d. If the pressure remains approximately constant during this time, the work W done by the gas in this process is:
A) $W=0$: the little man is doing the work.
B) W is positive and equal to PAd
C) W is negative and equal to -PAd
D) Not enough information to answer.

$$
F_{\text {gas }}=P \cdot A
$$

displacement in direction of force is $\Delta x_{11}=-d$

$$
\begin{aligned}
W=F_{g a s} \cdot \Delta x_{11} & =-P \cdot A \cdot d \\
& =P \Delta V
\end{aligned}
$$

Work done by a gas (constant pressure):

$$
W_{g a s}=P V_{\mathcal{C}_{F / A}} \Delta V_{A \Delta x}
$$

Compression: $W_{\text {gas }}$ negative

expansion: Was positive

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
A) -100,000J
B) 100 J
C) 1000 J
D) -1000
E)100,000J

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
A) -100,000J
B) 100 J
C) 1000 J
D) -1000
E)100,000J

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
A) $-100,000 \mathrm{~J}$
B) 100 J
C) 1000 J
D) -1000 J
E)100,000J

Work is the area under the Pus V graph

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
A) 200 J
B) 600 J
C) 800 J
D) 1000 J
E)-800J

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
A) 200 J
B) 600 J
C) 800 J
D) 1000 J
E)-800J

Assuming area formula

$P\left(k P_{a}\right)$ still works:

The graph shows how the pressure and volume of the gas in the cylinder change during the process A -> B. How much work does the gas do in this process?
V is increasing so W tue
A) 200 J
B) 600 J
D) 1000 J
E)-800J

Work done by a gas: changing pressure

- Break process into small steps with almost constant P
- Add up dW=PdV
(L) for all parts (area of skinny rectangles)
Result: W is area under the $P_{v s} V$ graph

$$
\text { Math: } W=\int_{V_{i}}^{V_{f}} P(V) d V
$$

An ideal gas is heated and allowed to expand from a volume 1 L to a volume 2 L in such a way that the pressure is equal to $\mathbf{P}=\mathbf{a} \mathbf{V}^{\mathbf{2}}$ where $\mathbf{a}=100 \mathrm{kPa} / \mathrm{L}^{2}$. How much work is done by the gas?

Need: $W=\int_{V_{i}}^{V_{f}} P(V) d V \leftarrow$ area under the curve
The mathematical recipe:

1) find a function $F(V)$ whose derivative is $P(V)$
2) the integral is $F\left(V_{f}\right)-F\left(V_{i}\right)$

An ideal gas is heated and allowed to expand from a volume 1 L to a volume 2 L in such a way that the pressure is equal to $\mathbf{P}=\mathbf{a} \mathbf{V}^{\mathbf{2}}$ where $\mathrm{a}=100 \mathrm{kPa} / \mathrm{L}^{2}$. How much work is done by the gas?

Need: $W=\int_{V_{i}}^{V_{f}} P(V) d V \leftarrow$ area under the curve
The mathematical recipe:

1) find a function $F(V)$ whose derivative is $P(V) \quad F(V)=\frac{1}{3} \cdot a \cdot V^{3}$
2) the integral is $F\left(V_{f}\right)-F\left(V_{i}\right)$

$$
W=\frac{1}{3} a V_{f}^{3}-\frac{1}{3} a V_{i}^{3}=\frac{100}{3} \cdot\left(2^{3}-1^{3}\right)=233 \mathrm{~J}
$$

U : The energy of a gas
Sum of: Kinetic energy
rotational energy $\left(0^{\circ}\right)$
vibrational energy , worm
electrostatic
potential energy $\alpha_{0}^{0} \cdots \alpha_{0}$
Main equation: $\Delta U=n C_{v} \Delta T$
molar specific hate: larger for more

Example: Energy of a monatomic ideal gas

$$
\begin{aligned}
U= & \text { total kinetic energy of } \\
& \text { molecules } \\
= & n \times N_{A} \times E_{\text {kin }}^{\text {avg }} \\
\text { \#moles } & \hat{A}_{\text {Avogadro's umber }} \\
E_{\text {kin }}^{\text {avg }}= & {\left[\frac{3}{2} \frac{R}{N_{A}}\right] \times T }
\end{aligned}
$$

Plug in: $U=\frac{3}{2} n R T$

$$
\Delta U=n\left[\frac{3}{2} R\right] \Delta T
$$

C_{V} for monatomic ideal gas

A) $\mathrm{A} \rightarrow \mathrm{B}$
B) $\mathrm{A} \rightarrow \mathrm{C}$
C) $\mathrm{A} \rightarrow \mathrm{D}$
D) Both $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow \mathrm{C}$

Extra.
During which of the processes shown is the work done by the gas negative?

W negative if V decreases
A) $\mathrm{A} \rightarrow \mathrm{B}$
B) $\mathrm{A} \rightarrow \mathrm{C}$
C) $\mathrm{A} \rightarrow \mathrm{D}$
D) Both $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow \mathrm{C}$

Extra
During which of the processes shown is the work done by the gas negative?

$$
\text { s. } A \rightarrow D
$$

