Office hours today: after class in Remo, 3:30pm in Zoom

Learning goals for today

- Use the ideal gas law to provide a qualitative explanation for processes where gases move other parts of a system through mechanical forces
- Calculate the change in energy of a gas in situations where heat is transferred to a gas, but the gas also does work on its surroundings
- Explain why the first law of thermodynamics follows from the conservation of energy
- Relate the work done by a system to the force exerted by that system and the displacement caused by that force.

Tells us how much force a gas exerts on the wall

Demo

https://www.youtube.com/watch?v=3EGfqU zBec

Why?

$$
\text { Hint: } P V=n R T
$$

Which of the following is an "explanation" for why the cup sucks up the liquid?
A) $T \downarrow$ so $V \downarrow$
B) $\mathrm{P} \downarrow$ so $\mathrm{V} \downarrow$
C) $\mathrm{n} \downarrow$ so $\mathrm{P} \downarrow$
D) $\mathrm{n} \downarrow$ so $\mathrm{V} \downarrow$
E) $\mathrm{T} \downarrow$ so $\mathrm{P} \downarrow$

Note: O_{2} is being consumed, but it's being replaced by other Which of the following is an "explanation" for who enures ($\mathrm{CO}_{2}, \mathrm{H}_{2}$) up the liquid?

Flame extinguishes \rightarrow temperature drops
A) $\mathrm{T} \downarrow$ so $\mathrm{V} \downarrow$
B) $\mathrm{P} \downarrow$ so $\mathrm{V} \downarrow$
pressure inside decreases
C) $\mathrm{n} \downarrow$ so $\mathrm{P} \downarrow$
D) $\mathrm{n} \downarrow$ so $\mathrm{V} \downarrow$
(E) $\mathrm{T} \downarrow$ so $\mathrm{P} \downarrow$
water is pushed into cup, since out side pressure is higher

The picture shows gas in a cylinder o. 1 m with a movable piston on top. There is no air outside the cylinder. Heat 10J flows into the gas via a burner at the bottom, causing the piston to move 0.1 m upwards. If the piston plus the weight on top have a mass of 1 kg , by roughly how much does the energy of the gas change during this process?
A) 0 J
B) +1 J
C) +9 J
D) +10 J
E) +11 J

The picture shows gas in a cylinder .m.mith a movable piston on top. There is no air outside the cylinder. Heat 10J flows into the gas via a burner at the bottom, causing the piston to move 0.1 m upwards. If the piston plus the weight on top have a mass of 1 kg , by roughly how much does the energy of the gas change during this process?
A) OJ
B) +1 J
C) +9 J
D) +10 J
E) +11 J

Change in pol. energy of weight o piston is $m g \Delta h \approx 1 \cdot 10 \cdot 0.1=1 \mathrm{~J}$. This energy must come from the gas. So we have 10 J in but 1 J out leaving a change of +9 J .

WORK = energy transferred by a mechanical process

The gas did 1 J of work on the piston.

$$
W_{g a s}=1 \mathrm{~J}
$$

\uparrow work done BY the gas

The first Law of Thermodynamics = Conservation of energy

* Eyas is often called $U *$

In the second picture, the hand exerts a constant 10N force opposing the expansion of the gas. The person uses up 2 J of energy in order to exert this force. We can say that the work done by the gas is
A) Greater in the second case
B) Less in the second case
C) The same in the second case

In the second picture, the hand exerts a constant 10 N force opposing the expansion of the gas. The person uses up 2J of energy in order to exert this force. We can say that the work done by the gas is Gas cant tell what is
A) Greater in the second case
B) Less in the second case pushing down. Exactly the same situation from the
C) The same in the second case point of view of the gas, so same energy lost via work.

First example:

$$
\begin{aligned}
W & =(m g) \cdot \Delta x \\
& =F_{g a s} \cdot \Delta x
\end{aligned}
$$

This is ALWAYs the work done by the gas, regardless of what it is pressing against.

$$
\begin{gathered}
W=F \cdot \Delta x_{\text {II }} \quad \text { (constant force) } \\
\text { Fore e } \begin{array}{c}
\text { displacement in } \\
\text { exerted } \\
\text { by gas }
\end{array} \quad \text { direction of force }
\end{gathered}
$$

general expression for work.

