No tutorials this week! Midterm tonight!
Office hours today: after class in Remo
Learning goals for today

- Explain quantitatively how the intensity of light from an object radiating uniformly in all directions varies with the distance to the object
- Describe which molecular properties of a gas affect the pressure on the walls of a container, and what proportionality relationship each of these quantities has with the pressure
- Describe the microscopic origin of the ideal gas law

If we moved the Earth twice as far away from the Sun, the power of solar radiation hitting the Earth would be
A) twice as much as before.
B) the same as before.
C) half as much as before
D) one quarter as much as before.
E) one eighth as much as before.

If we moved the Earth twice as far away from the Sun, the power of solar radiation hitting the Earth would be
A) twice as much as before.
B) the same as before.
C) half as much as before
D) one quarter as much as before.
E) one eighth as much as before.

At twice the distance, sunlight spreads
No tutorials this week.

Power through tole is

$$
H_{\sin } \cdot \frac{A}{4 \pi R^{2}}
$$

INTENS BY of sunlight (power per area) is

$$
I=\frac{H_{\text {sun }}}{4 \pi R^{2}} \rightarrow \text { double } R \Rightarrow \frac{1}{4} I
$$

At distance of Earth, $I=I_{s c}=1367 \mathrm{~W} / \mathrm{m}^{2}$

Key relation for steady-state heat flow:

$$
H_{\text {in }}=H_{\text {out }}
$$

$H_{\text {in }} \xrightarrow{\text { tons } T \text { ont }}$

Our problem:

Key relation for steady-state heat flow:

$$
H_{\text {in }}=H_{\text {out }}
$$

$$
\mathrm{H}_{\text {in }} \xrightarrow{x} \text { Hons T }
$$

Our problem:

thermal
Hent: IR radiation

$$
=\left(4 \pi r^{2}\right) e \sigma T^{4}
$$

${ }^{*} A_{\text {surface }}$

Key relation for steady-state heat flow:

$$
H_{\text {in }}=H_{\text {out }}
$$

$$
\mathrm{H}_{\text {in }} \xrightarrow{x} \text { Hons } T
$$

Our problem:

* set equal t solve for T_{*}
thermal
Hent: IR radiation

$$
=\left(4 \pi r^{2}\right) e \sigma T^{4}
$$

${ }^{\wedge} A_{\text {surface }}$
$H_{\text {in }}$: absorbed sunlight

$$
I_{s c} \cdot \pi r^{2} \cdot(1-a)
$$

albedo = fraction reflected

Result:

$$
T=\left(\frac{I_{s c} \cdot(1-a)}{4 e \sigma}\right)^{\frac{1}{4}}
$$

Result:

$$
T=\left(\frac{I_{s c} \cdot(1-a)}{4 e \sigma}\right)^{\frac{1}{4}}
$$

No atmosphere: $e \approx 1$

$$
T \approx-18^{\circ} \mathrm{C}
$$

Effect of greenhouse gases

$$
e \approx 0.6 \quad T=14.5 \mathrm{C}
$$

2. Mars albedo, the reflection coefficient for sunlight from Mars, is 0.250 . The radius of Mars is 3397 km . The Solar constant at Earth is $1367 \mathrm{~W} / \mathrm{m}^{2}$ and the distance from Mars to the Sun is 1.52 times the Earth to Sun distance.
a) Find the temperature of Mars.

Q: Write an expression for $\vec{H}_{\text {in }}$ in terms of the information provided
 (you don't need to evaluate it)
2. Mars albedo, the reflection coefficient for sunlight from Mars, is 0.250 . The radius of Mars is 3397 km . The Solar constant at Earth is $1367 \mathrm{~W} / \mathrm{m}^{2}$ and the distance from Mars to the Sun is 1.52 times the Earth to Sun distance.
a) Find the temperature of Mars. power of
absorbed sunlight

(you don't need to evaluate it)
for Earth $\quad H_{\text {in }}=I_{s c} \times \pi r_{E}^{2} \times\left(1-a_{E}\right)$
for $\quad H_{\text {Mars: }}=I_{\text {Mars }} \times \pi r_{M}^{2} \times\left(1-a_{m}\right)$

$$
R_{\text {Mars }}=1.52 R_{\text {Earth }} \text { so } I_{\text {Mars }}=\frac{1}{1.52^{2}} I_{\text {Earth }}
$$

New Topic: Putting Gases to Work!

The picture shows molecules of an ideal gas near the wall of a container. What properties of these molecules does the pressure on the wall (force per unit area) depend on?

EXTRA: for each quantity you identify, what would happen to the pressure if you double that quantity?

The picture shows molecules of an ideal gas near the wall of a container. What properties of these molecules does the pressure on the wall (force per unit area) depend on?
double density \longrightarrow double P
double mass \longrightarrow double P
double velocity \rightarrow quadruple P
(twice as many collisions twice as much impact)

$$
P=\text { const } \cdot \frac{N}{V} \cdot \overbrace{m \cdot V_{\text {avg }}^{2}}^{\text {density }} \begin{gathered}
\text { twice as much } \\
\text { en molecule }
\end{gathered}
$$

Temperature t Kinetic Energy
If we define $T=$ constant, $\times E_{\text {kin }}^{\text {avg }}$
Molecular model gives:

$$
P=\operatorname{constant} 2 \times \frac{N}{V} \times T
$$

So P is proportional to T for fixed N, V

Temperature t Kinetic Energy
If we define $T=$ constant, $\times E_{\text {kin }}^{\text {avg }}$
Molecular model gives:

$$
P=\operatorname{constant} 2 \times \frac{N}{V} \times T
$$

So P is proportional to T for fixed n, V

* Molecular definition of temperature is consistent with Kelvin scale definition!
Definitions match exactly if:

$$
\text { constant }=\frac{8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}{6.02 \times 10^{23}} \longleftarrow \text { call this } R
$$

Tells us how much force a gas exerts on the wall

