Office Hours Today: after class (Remo), 3:30-4:30pm (or later) in Zoom

Midterm Q\&A session: Tuesday, 5-7pm in Zoom

Learning Goals for Today

- Calculate the equilibrium temperature of a radiating object (e.g. the Earth) by equating the ingoing and outgoing energy currents
- Describe what is meant by intensity of radiation
- Calculate the intensity of radiation at some distance from an object radiating symmetrically in all directions
- Describe how the intensity of radiation changes if we change the distance from the source, for a source radiating uniformly in all directions
- Predict the rate of energy absorbed by an object given its shape and orientation, its albedo, and the intensity of incident radiation
- Explain why the presence of greenhouse gases in the atmosphere of Earth lower its effective emissivity

$$
\begin{aligned}
& (+\cdots+1 \mid) \\
& \square=\sigma=?
\end{aligned}
$$

Total Power From Thermal Radiation

Key relation for steady-state heat flow:
a temperatures not changing

$$
H_{\text {in }}=H_{\text {out }}
$$

$$
H_{\text {in }} \text { roost } T \text { Hour }
$$

Temperatures not changing
-

$$
H_{\text {in }}=H_{\text {out }}
$$

(for planet outside core)

$$
\begin{gathered}
P_{\text {heater }}=A \sigma e T^{4} \\
\| \\
T_{\text {surface }}=\left(\frac{P_{\text {heater }}}{A \sigma e}\right)^{\frac{1}{4}}
\end{gathered}
$$

A more interesting one...
A planet with radius $r=6400 \mathrm{~km}$ lies at a distance $\mathrm{R}=150,000,000 \mathrm{~km}$ from a yellow star with temperature $\mathrm{T}=5700 \mathrm{~K}$ and radius $R_{S}=695,000 \mathrm{~km}$. Estimate the surface temperature of the planet.

The planet has albedo (fraction of incident light reflected) $\mathrm{A}=0.37$ and emissivity e close to 1 .

Key relation for steady-state heat flow:

$$
H_{\text {in }}=H_{\text {out }}
$$

Our problem:

$H_{\text {in }}$: absorbed sunlight
$H_{\text {out }}$: IR radiation $=A e \sigma T^{4}$
What is $H_{i n}$?

A gigantic sphere with radius R is built surrounding the sun. A hole is cut into the sphere, removing an area A . What is the rate of energy flow for light from the sun through the hole in terms of the Sun's total power $\mathrm{H}_{\mathrm{sun}}$?
A) $\mathrm{H}_{\text {sun }} \times \mathrm{A}$
B) $\mathrm{H}_{\text {sun }} \times \frac{\mathrm{A}}{\mathrm{R}^{2}}$
C) $H_{\text {sun }} \times \frac{A}{\pi R^{2}}$
D) $\mathrm{H}_{\text {sun }} \times \frac{\mathrm{A}}{4 \pi \mathrm{R}^{2}}$

Sun

EXTRA: If $\mathrm{H}_{\text {sun }}=3.86 \times 10^{26} \mathrm{~W}$ and $\mathrm{R}=1.5 \times 10^{11} \mathrm{~m}$, how much solar energy per second goes through an area of $1 \mathrm{~m}^{2}$ at the distance R ?

A gigantic sphere with radius R is built surrounding the sun. A hole is cut into the sphere, removing an area A . What is the rate of energy flow for light from the sun through the hole in terms of the Sun's total power $\mathrm{H}_{\mathrm{sun}}$?
A) $\mathrm{H}_{\text {sun }} \times \mathrm{A}$
B) $\mathrm{H}_{\text {sun }} \times \frac{\mathrm{A}}{\mathrm{R}^{2}}$
C) $H_{\text {sun }} \times \frac{A}{\pi R^{2}}$
D) $\mathrm{H}_{\text {sun }} \times \frac{\mathrm{A}}{4 \pi \mathrm{R}^{2}}$

Sun

EXTRA: If $\mathrm{H}_{\text {sun }}=3.86 \times 10^{26} \mathrm{~W}$ and $\mathrm{R}=1.5 \times 10^{11} \mathrm{~m}$, how much solar energy per second goes through an area of $1 \mathrm{~m}^{2}$ at the distance R ?

A gigantic sphere with radius R is built surrounding the sun. A hole is cut into the sphere, removing an area A . What is the rate of energy flow for light from the sun through the hole in terms of the Sun's total power $\mathrm{H}_{\text {sun }}$?
A) $\mathrm{H}_{\text {sun }} \times \mathrm{A}$
B) $\mathrm{H}_{\text {sun }} \times \frac{\mathrm{A}}{\mathrm{R}^{2}}$
C) $H_{\text {sun }} \times \frac{A}{\pi R^{2}}$
D) $H_{\text {sun }} \times \frac{A}{4 \pi R^{2}}$

- Power leaving sun = power reaching sphere
- Hole covers fraction $\frac{A}{4 \pi R^{2}}$ of sphere
- So power of light coming out is $\frac{A}{4 \pi R^{2}} \times H_{\text {sun }}$

The solar constant.

- The power from the sun is $H_{\text {Sun }}=A_{\text {sun }}^{\downarrow} \cdot \sigma \cdot T_{\text {sun }}^{4}$
- At Earth's orbit, the power per unit area (or Intensity) of sunlight is

$$
I_{S C}=\frac{H_{S}}{4 \pi R^{2}}=1367 \mathrm{~W} / \mathrm{m}^{2}
$$

"solar constant"

What is the power H_{In} of solar radiation absorbed by the Earth? Answer in terms of I_{Sc}, the albedo a (fraction of sunlight reflected) and the Earth's radius r.

$$
r \uparrow \bigcirc I_{s c}=1367 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
$$

A) $I_{S C} \cdot \pi r^{2} \cdot a$
B) $I_{S C} \cdot \pi r^{2} \cdot(1-a)$
C) $I_{S C} \cdot 2 \pi r^{2} \cdot a$
D) $I_{S C} \cdot 2 \pi r^{2} \cdot(1-a)$
E) $I_{S C} \cdot 4 \pi r^{2} \cdot(1-a)$

The heat current into the earth due to sunlight is $H_{i n}=\pi r^{2}(1-a) I_{S C}$
Calculate the equilibrium surface temperature T in terms of $\mathbf{a}, \mathrm{I}_{\mathrm{sc}}, \mathbf{r}$, $\boldsymbol{\sigma}$, and the emissivity \mathbf{e}.

Click A if you have a result, B if you are stuck.

$$
\text { recall: } \quad H_{\text {rad }}=\operatorname{Aeo} T^{4}
$$

The heat current into the earth due to sunlight is $H_{i n}=\pi r^{2}(1-a) I_{S C}$
Calculate the equilibrium surface temperature T in terms of $\mathbf{a}, \mathrm{I}_{\mathrm{sc}}, \mathbf{r}$, $\boldsymbol{\sigma}$, and the emissivity \mathbf{e}.

Click A if you have a result, B if you are stuck.

$$
\text { recall: } \quad H_{\text {rad }}=\operatorname{Aeo} T^{4}
$$

The heat current into the earth due to sunlight is $H_{\text {in }}=\pi r^{2}(1-a) I_{e}$
Calculate the equilibrium surface temperature T in terms of $\mathbf{a}, \mathbf{I}_{\mathrm{sc}}, \mathbf{r}$, $\boldsymbol{\sigma}$, and the emissivity e .

Hin: absorbed sunlight
$H_{\text {ont }}$: IR radiation

We have $H_{\text {in }}=H_{\text {out }}$ (steady state)

$$
\begin{aligned}
\pi r^{2}(1-a) I_{s c} & =4 \pi r^{2} \cdot e \cdot \sigma \cdot T^{4} \\
* T & =\left[\frac{(1-a) I_{s c}}{4 e \sigma}\right]^{\frac{1}{4}} \star
\end{aligned}
$$

$$
\star T=\left[\frac{(1-a) I_{s c}}{4 e \sigma}\right]^{\frac{1}{4}} *
$$

The numbers: surface of the Earth has $e \approx 1$ for IR radiation.

$$
I_{e}=1367 \mathrm{~W} / \mathrm{m}^{2} \quad a=0.3 \quad \sigma=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{k}^{4}}
$$

$$
* T=\left[\frac{(1-a) I_{s c}}{4 e \sigma}\right]^{\frac{1}{4}} \star
$$

The numbers: surface of the Earth has $e \approx 1$ for IR radiation.

$$
I_{e}=1367 \mathrm{~W} / \mathrm{m}^{2} \quad a=0.3 \quad \sigma=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{k}^{4}}
$$

These give $T \approx-18^{\circ} \mathrm{C}$
Something is off...

Actual surface temperature is larger due to the GREENHOUSE EFFECT: some IR radiation is absorbed by "greenhouse gases" i re-emitted back to Earth.

$e=1$

$e \approx 0.6$

$$
* T=\left[\frac{(1-a) I_{s c}}{4 e \sigma}\right]^{\frac{1}{4}} *
$$

Lower $e \Rightarrow$ higher T
Real $e \approx 0.6$ gives $T=14.5^{\circ} \mathrm{C}$

But e can decrease e.g. due to increasing CO_{2} concentration in atmosphere. Global warming
CO_{2} correlates closely with temperature

CO_{2} levels:

Almost all climate scientists believe this rise due to human activity

