Learning goals:

- When heat is flowing steadily from an object with a higher thermal conductivity to an object with a lower thermal conductivity, explain how the heat currents can be the same
- Calculate heat flow or interface temperatures in systems with materials of various thermal conductivities
- Given the heat current into or out of an object, calculate the heat transferred in a given amount of time, or the temperature change of that object in a given amount of time

Thermal Conductivity: Determines heat current from temperature gradient.

Two materials of equal dimensions but different thermal conductivities are placed side to side between objects kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and a steady heat flow is established. If $k_{1}>k_{2}$, we can say that the
 temperature T in the middle is:
A) Equal to $50^{\circ} \mathrm{C}$
B) Greater than $50^{\circ} \mathrm{C}$
C) Less than $50^{\circ} \mathrm{C}$

EXTRA: How would you calculate the temperature.

Two materials of equal dimensions but different thermal conductivities are placed side to side between objects kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, and a steady heat flow is established. If $k_{1}>k_{2}$, we can say that the temperature T in the middle is:

EXTRA: How would you calculate the temperature.
see intuition next slide

$k_{1}>k_{2}$

Calculate T in terms of k_{1} and k_{2}
Hint: what are H_{1} and H_{2} and how are they related to each other?
Click A if you have an answer
Click B if you are stuck

$$
H=k A \frac{T_{H}-T_{C}}{L}
$$

Calculate T in terms of k_{1} and k_{2}

- Energy conservation $\stackrel{\text { steady flow }}{\Rightarrow H_{1}=H_{2}}$

$$
\begin{aligned}
-\quad k_{1} \cdot A \cdot \frac{T-0^{\circ} C^{\Delta}}{L} & =k_{2} \cdot A \cdot \frac{100^{\circ}-T}{L} \\
k_{1}^{2}\left(T-0^{\circ} \mathrm{C}\right) & =k_{2}\left(100^{\circ}-T\right) \\
\operatorname{ligger~}^{T} & =\frac{k_{2} \text { smaller }}{k_{1}+k_{2}} \times 100^{\circ} \mathrm{C}
\end{aligned}
$$

A small steel bowl of water at room temperature $\left(\mathrm{T}_{0}=20^{\circ} \mathrm{C}\right)$ is placed in contact with ice water in $\left(\mathrm{T}=0^{\circ} \mathrm{C}\right)$. Sketch a graph of how you expect the temperature of the water in the smaller bowl to change with time, assuming that there is always some ice remaining and the system is isolated from its environment.

Sketch a graph showing how you expect the temperature of the water in the small bowl to change with time.

Sketch a graph showing how you expect the temperature of the water in the small bowl to change with time.

Let's understand this quantitatively

$$
\begin{aligned}
& M=0.25 \mathrm{~kg} \\
& A=0.01 \mathrm{~m}^{2} \\
& L=2 \mathrm{~mm}
\end{aligned}
$$

Question: What is the change in temperature dT of the water on top that occurs in a small time $\mathrm{dt}=1$ second?

$$
\begin{aligned}
& M=0.25 \mathrm{~kg} \\
& A=0.01 \mathrm{~m}^{2} \\
& L=2 \mathrm{~mm}
\end{aligned}
$$

Question: What is the change in temperature IT of the water on top that occurs in a small time $\mathrm{dt}=1$ second?

Strategy: first consider each part separably

$$
Q=M_{c} \Delta T
$$

A heat current \mathbf{H} flows out of the water on top. In a time dt, what is the change $\mathbf{d T}$ in the temperature of this water?
A) $\frac{H}{M C}$
B) $-\frac{H d t}{M c}$
C) $\frac{H}{M c d t}$
D) -Hdt
E) $-\mathrm{H} / \mathrm{dt}$

Hint: how much heat leaves the water during this time?

$$
Q=M c \Delta T
$$

A heat current \mathbf{H} flows out of the water on top. In a time dr, what is the change $\mathbf{d T}$ in the temperature of this water?

Hint: how much heat leaves the water this time?
In time dit, heat $H \times d t$ flows out of water, so

$$
Q=-H d t
$$

We have: $d T=\frac{Q}{M c}$ so $d T=-\frac{H}{m c} d t$

What is the change in temperature IT of the water on top that occurs in a small time lt?

$$
Q=M_{c} \Delta T
$$

So far: $d T=-\frac{H}{M c} d t \quad$ What is H?

Look at steel

$$
H=k A \frac{T_{H}-T_{C}}{L}
$$

$$
H=k A \frac{T}{L}
$$

What is the change in temperature IT of the water on top that occurs in

$$
Q=M_{c} \Delta T
$$ a small time ct?

So far: $d T=-\frac{H}{M c} d t \quad$ What is H?

$$
H=k A \frac{T}{L} \quad \text { combine: } d T=-\frac{k A}{M c L} T d t
$$

Previous slide: $\frac{d T}{d t}=-\left(\frac{k A}{M_{c} L}\right) \cdot T$
\uparrow
Prediction: slope of graph appoaches O as $T \rightarrow 0$

$$
\frac{d T}{d t}=-\left(\frac{k A}{M c L}\right) \cdot T_{\text {some constant }}
$$

Rate of decrease of T is proportional to T.
Math: this means $T(t)$ is an exponential

$$
T(t)=T(0) e^{-\frac{k A}{M c L} \cdot t}
$$

Prediction:

$$
T(t)=20^{\circ} \mathrm{C} \times e^{-\frac{k A}{M c L} \cdot t}
$$

