

In this assignment, we will consider a simple physical system with M "molecules" each of which can carry units of energy. We will determine the entropy and temperature of the system as a function of energy.

Question 1

For a system with 4 molecules, determine the number of configurations with $0,1,2$, and 3 units of energy. Write these down explicitly: for example, $(0,2,0,1)$ would be one configuration with 3 units energy. Note: we are considering the units of energy to be identical, so the only thing we need to keep track of is how many units of energy each molecule has.

Question 2

For the general case of M molecules, determine (in terms of M) how many configurations there are with 0,1 and 2 units of energy. Explain your answer. Check your formula by comparing the answers for $M=4$ with your answers for question 1.

Question 3

Now let's work out the general formula for E units of energy. We can use a trick. For any way of dividing up the energy, we can make a picture with E unfilled boxes and $\mathrm{M}-1$ filled boxes. For example, $(1,2,0,3)$ is associated with the picture $\square \square \square \square \square \square \square \square \square$, where the unfilled boxes represent 6 units energy and the 3 filled boxes are dividers, which separate the energy into 4 groups, of size $1,2,0$, and 3 respectively. To make sure you understand this, draw the picture corresponding to $(2,0,3,0)$ and figure out what distribution ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$) corresponds to the picture

We have learned that for any way of dividing E units of energy between M molecules, we can associate a picture with $\mathrm{E}+\mathrm{M}-1$ boxes, $\mathrm{M}-1$ of which are filled. So the number of ways of distributing the energy is equal to the number of such pictures. How many is this?

Mathematical aside: the number of ways to choose n objects from a total of N objects is equal to

$$
\frac{N!}{n!(N-n)!}
$$

To see this, notice that there are N choices for the first object, $(N-1)$ choices for the second, and so forth, until $(N-n+1)$ choices for the nth object. This would give $N(N-1) \ldots(N-n+1)$ total ways. But we have overcounted, since for example, choosing A then B is gives us the same two objects as choosing B then A. So we have to divide by $n!$, the number of possible orderings of n objects. The final answer is

$$
\frac{(N-1) \ldots(N-n+1)}{n!}=\frac{N!}{n!(N-n)!}
$$

This is often written as $\binom{N}{n}$ and said as " N choose n ".

Question 4

Now we have a formula for $N(E)$ for our system of M molecules. According to our definition of entropy, the entropy of the system is $S=k_{B} \ln (N(E))$. To get a simple approximate formula for S, we can use a famous formula for logarithms of factorials, that $\ln (A!) \approx A \ln (A)-A$ when A is large. Using this formula (and formulae for logarithms of products and quotients), show that when E and M are large, we have approximately that
$S(E) \approx k_{B}((M+E-1) \ln (M+E-1)-(M-1) \ln (M-1)-E \ln (E))$
Sketch the entropy as a function of energy (you can pick some value of M and then plot this using a computer).

Question 5

Using your results from section 4 and the definition $\mathrm{T}^{-1}=\mathrm{dS} / \mathrm{dE}$, determine the temperature of the system as a function of energy. Sketch this function.

Question 6

For very small x, we have $\ln (1+x) \approx x$. Using this, come up with a formula for the temperature in terms of energy that is valid in the case where $E \gg M$. Assuming that M is large, does your result agree with our previous idea that temperature should be related to the amount of energy per molecule?

Question 7

In the same limit, $\mathrm{E} \gg \mathrm{M}$, determine the molar specific heat of our system of molecules. Express your answer in terms of R.

