

A loop of wire is pulled out of a magnetic field. The magnetic force on this wire is

- A) Zero
- B) Upwards
- C) Downwards
- D) To the left
- E) To the right

EXTRA: Imagine you are in the frame of reference of the wire. Is there any force on the wire? If so, why?

A loop of wire is pulled out of a magnetic field. The magnetic force on this wire is

- A) Zero
- B) Upwards
- C) Downwards
- D) To the left
- E) To the right

The magnetic field is increasing in magnitude inducing a current of magnitude I. We can say that the net voltage drop

$$\Delta V_{A \rightarrow B} + \Delta V_{B \rightarrow C} + \Delta V_{C \rightarrow D} + \Delta V_{D \rightarrow A}$$

is equal to:

- A) 41R
- B) -41R
- C) 0 (because of Kirchoff's Loop Law)
- D) None of the above

The magnetic field is increasing in magnitude, inducing a current of magnitude I. We can say that the net voltage drop

$$\Delta V_{A \rightarrow B} + \Delta V_{B \rightarrow C} + \Delta V_{C \rightarrow D} + \Delta V_{D \rightarrow A}$$

is equal to:

- A) 41R
- B) -41R
- C) 0 (because of Kirchoff's Loop Law)
- D) None of the above

A conducting rod moves with speed v along a wire as shown. The EMF in the conducting loop is equal to:

- A) 0
- B) HLBv
- C) HLB
- D) HBv
- E) LBv

A conducting rod moves with speed valong a wire as shown. The magnitude of the EMF in the conducting loop is equal to:

- A) 0
- B) HLBv
- C) HLB
- D) HBv
- E) LBv

EXTRA: What would the current look like as a function of time if these are real wires with resistance?

The magnetic field through a loop changes with time, as shown in the graph

Sketch a graph of the current in the loop as a function of time.

(choices on next page)

Which represents I(t) in the loop?

E) None of the above

Which represents I(t) in the loop? At A

E) None of the above

A magnet is rotated a frequency ω near a coil, and the voltage across the coil is graphed as a function of time. How will the graph change if the frequency is increased?

(Choices will be given later)

A magnet is rotated a frequency ω near a coil, and the voltage across the coil is graphed as a function of time. How will the graph change if the frequency is increased?

A magnet is rotated a frequency ω near a coil, and the voltage across the coil is graphed as a function of time. How will the graph change if the frequency is increased?

A flexible metal cylinder is surrounded by a coil of wire as shown. If the current through the coil is rapidly increased (by connecting it to a big charged capacitor), what will happen to the cylinder?

Hint: will there be any forces on the cylinder??

When the current is rapidly increased, the pop can will:

- A) Shoot upwards
- B) Shoot downwards
- C) Bulge outward
- D) Bulge inward
- E) Heat up but hold its position and shape

When the current is rapidly increased, the pop can will:

- A) Shoot upwards
- B) Shoot downwards
- C) Bulge outward
- D) Bulge inward
- E) Heat up but hold its position and shape

In the picture to the right, the magnetic field in the central region is produced by a solenoid. If the red arrows show an electric field that is being induced by changes in this magnetic field, we can say

- A) the current in the solenoid is increasing.
- B) the current in the solenoid is decreasing.
- C) Either A or B are possible
- D) This scenario is impossible: the electric field induced by the magnetic field should be pointing clockwise.

In the picture to the right, the magnetic field in the central region is produced by a solenoid. If the red arrows show an electric field that is being induced by changes in this magnetic field, we can say

- A) the current in the solenoid is increasing.
- B) the current in the solenoid is decreasing.
- C) Either A or B are possible
- D) This scenario is impossible: the electric field induced by the magnetic field should be pointing clockwise.

