
Predicting the future with Newton’s Second Law

To represent the motion of an object (ignoring rotations for now), we need three func-
tions x(t), y(t), and z(t), which describe the spatial coordinates of the object for each
possible time. Since there are an infinite number of possible times (between any start-
ing and ending time), giving the coordinates at all possible times is actually an infinite
amount of information!

Part of the magic of physics is that we can predict all of this information knowing
only the initial position r⃗(t = 0) = (x(t = 0), y(t = 0), z(t = 0)) and velocity v⃗(t = 0) =
(vx(t = 0), vy(t = 0), vz(t = 0)) of an object, plus the information about the object’s
environment (specifically, what forces are acting on it). The key tool is Newton’s
Second Law, which we write as:1

a⃗ =
1

m
F⃗NET . (1)

This says that we can predict the acceleration of an object by knowing the forces on the
object. We are assuming that the object’s environment is understood well enough that
we can predict the forces on the object from the object’s position and velocity.

Why we can predict the future

To see why Newton’s Second Law allows us to predict the future, we need to remember
that acceleration is defined to be the rate of change of velocity a⃗ = dv⃗/dt. So given the
acceleration a⃗ at some time t, we can say that in a time δt, the velocity will change by
a⃗δt. If the velocity at time t is v⃗(t), the velocity at the later time (t+ δt) will then be

v⃗(t+ δ) ≈ v⃗(t) + δt a⃗ . (2)

In exactly the same way, using the definition of velocity as the rate of change of position,
we get

r⃗(t+ δ) ≈ r⃗(t) + δt v⃗ . (3)

We put approximately equals to (≈) here because the acceleration and/or velocity
might be changing with time. In this case, the equations become exact only in the
limit where δt → 0, but in practice, we just need to take δt small enough to get
whatever accuracy we desire.

Let’s understand why (2) and (3) together with Newton’s Law (1) are so powerful.
Remembering that Newton’s law allows us to predict acceleration from the force on
the object, and that the force at some time is determined by the position and velocity
of the object at that time (we’ll write the force as F⃗ (r⃗(t), v⃗(t)) to remind ourselves of
this), we can summarize (2) and (3) as

v⃗(t+ δ) ≈ v⃗(t) + δt
1

m
F⃗ (r⃗(t), v⃗(t))

1Here, we are assuming that speed is small compared with the speed of light, so that we can use
p⃗ = mv⃗ to rewrite Newton’s Law from its original form dp⃗/dt = F⃗ to the familiar F⃗ = ma⃗.
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r⃗(t+ δ) ≈ r⃗(t) + δt v⃗ .

Here, the right hand sides are all things that we can calculate given the position and
velocity of the object at time t. The left hand sides are the position at velocity at a
slightly later time. So if we know position and velocity now, we can predict what they
will be slightly later! We can do this as many times as we want to predict what the
object will do in the future.

To summarize, we get the following recipe for predicting the motion.

• Start with the position r⃗(t) and the velocity v⃗(t) at some time.

• Given these, determine the net force on the object.

• Using (4), calculate the position and velocity r⃗(t+ δt) and the velocity v⃗(t+ δt)
at some slightly later time.

• Repeat.

By taking the time step δt to be sufficiently small, we can predict the position and
velocity of an object at some specified later time with arbitrary precision.2 In many
cases, there are simpler ways to actually predict the motion than using this repetitive
procedure. But our discussion here shows that we can always predict the motion in
principle no matter how complicated the forces are.

Differential equations of motion

The equations (4) are equivalent to the following exact equations3

dv⃗

dt
=

1

m
F⃗ (r⃗(t), v⃗(t))

dr⃗

dt
= v⃗ .

Since these equations contain derivatives, they are known as DIFFERENTIAL EQUA-
TIONS. The solutions to equations like this are functions (in this case r⃗(t) and v⃗(t)).
What we have seen is that given some INITIAL CONDITIONS – that is, the position
and velocity r⃗(t1) and v⃗(t1) at some initial time t1 – there will be a unique solution
(that we can find in principle using the repetitive method) to these equations. This
solution describes the motion of the object at all later times. For this reason, the
equations (4) are known as the EQUATIONS OF MOTION for the object.4

2Note that in some systems, for large enough times into the future, achieving such precision would
require taking a δt that is impractically small.

3Here the second one is just the definition of velocity and the first combines the definition of
acceleration with Newton’s first Law. These were exactly what we used to derive (4)

4Sometimes, the two equations (4) are combined into one by using the second to eliminate v from
the first. This gives

d2r⃗

dt2
=

1

m
F⃗ (r⃗(t), v⃗(t))

, but the equations of motion are a little less clear to interpret in this form.
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Methods for solving the equations of motion

Let’s now discuss various procedures for actually solving the equations of motion.

1) The Euler method

In the most difficult cases (actually, in most realistic cases), the repetitive procedure
we have described in the previous section (or some closely related procedure) may be
the only way of predicting the motion. While this procedure is tedious to do by hand,
it is very easy to implement on a computer. The specific procedure described is known
as the Euler method for solving the differential equations. If we predict the position
and/or velocity of an object at some later time using this method, the accuracy of our
result (difference from the exact result) is generally proportional to the size of our time
step δt. For some other numerical methods, the error decreases more quickly as we
take δt to zero.

2) Solving the differential equations directly

In some cases, the differential equations are simple enough that we can solve them
directly by finding a family of functions that satisfies the equations and then choosing
the ones that have the right initial conditions. Various higher-level math courses (or
books on differential equations) teach you techniques for doing this. In the simplest
cases, it’s possible just to guess a solution and check that it works. As an example,
if we had dv/dt = −Bv (e.g. for a resistive force proportional to the speed of the
object), we could recall that exponential functions have a derivative proportional to
the function itself and then guess the family of solutions v(t) = Ae−Bt, using the initial
velocity to determine the constant A.

3) Cases where the force is some known function of time - antidifferentiation
method

A special case where we can directly find a solution is when the force is some known
function of time, which does not explicitly refer to the position or the velocity of the
object.5 This includes cases where the forces are constant, but also cases where they
can change with time. In these cases, the equations of motion simplify to

dvx
dt

= Ax(t)

dx

dt
= vx .

where Ax(t) is known, and we may have similar equations for y and z. Note that Ax(t)
is not allowed to depend on v⃗ or r⃗. In this case we can use the following method:

5Examples of forces that do depend explicitly on position or velocity are the drag force (with
magnitude proportional to v2), or the force from a spring, which changes as the object moves and the
spring stretches.
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• Find a function g(t) whose derivative is Ax(t).

• Since the derivative of vx(t) is also Ax(t), the graphs of g(t) and vx(t) have the
same slope everywhere. This means that vx(t) = g(t) + C for some constant C.

• To find C, we use the information about what vx is at the initial time. For
example, if we know vx is v1 at time t1, then we need to choose C = v(t1)−g(t1),
so that

vx(t) = g(t)− g(t1) + v(t1) . (4)

• Once we know vx(t) we repeat the same procedure to find x(t).

• Use the same approach independently for y and z if necessary.

4) Cases where the force is some known function of time - area method

Remarkably, there is another equivalent method for determining the velocity at later
times if we are given the acceleration as a function of time. This may be summarized
as

vx(t2) = vx(t1) +
∫ t2

t1
Ax(t)dt , (5)

where the expression
∫ t2
t1
Ax(t)dt means the area under the the graph of Ax(t) between

t1 and t2. Similarly, once we know vx(t), we can write

x(t2) = x(t1) +
∫ t2

t1
vx(t)dt .

In practice, we might use this method if the acceleration is given to us in the form of
a graph of a very simple function for which we can immediately read off the area.

Origin of the area method

Where does this come from? It’s actually just the Euler method in disguise! Let’s say
we have

dv

dt
= A(t) , (6)

and the velocity at time t1 is equal to v1. Then we can use (2) to write the velocity at
time v(t1 + δt) as

v(t1 + δt) = v(t1) + δt A(t1) .

Repeating for the later time t1 + 2δt, we get

v(t1 + 2δt) = v(t1 + δt) + δt A(t1 + δt)
= v(t1) + δt A(t1) + δt A(t1 + δt)
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Figure 1: Rectangles of thickness δt under graph of A(t) from t1 to t2. Area of the first
rectangle is δt A(t1), area of the second rectangle is δt A(t1 + δt), and so forth.

where we have used our previous result in the last line. If we keep repeating this all
the way to some later time t2, we’ll get

v(t2) = v(t1) + δtA(t1) + δt A(t1 + δt) + δt A(t1 + 2δt) + . . .+ δt A(t2 − δt) .

Now, looking at figure 1, we notice that each term here with a δt is exactly the area
of one of the rectangles under the graph. In the limit where δt goes to zero (where the
Euler method becomes exact), the rectangles become infinitely thin and completely fill
in the region under the curve between t1 and t2 (i.e. there are no gaps). Thus, the sum
of the areas is the area under the curve, and we have derived the formula (5).

The fundamental theorem of calculus

We’ve actually just figured out a completely AMAZING MATHEMATICAL FACT.
Combining what we’ve learned so far, we’ve actually come up with a method for how
to calculate the area under the curve of a function! Let’s review: we saw in the previous
section that if v satisfies the equation (6), then the change in v from time t1 to time
t2 is equal to the area under the graph of A(t) from t1 to t2. But we’d already given
a completely different method for finding this change in v. According to the other
method, if we find a function g(t) whose derivative is A(t), then the change in velocity
from t1 to t2 is g(t2) − g(t1) (using equation (4). Since both methods are correct, it
must be that ∫ t2

t1
A(t)dt = g(t2)− g(t1)

where g is any function whose derivative is A(t). This amazing result connects dif-
ferentiation with integration (finding areas) and is part of THE FUNDAMENTAL
THEOREM OF CALCULUS.
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Example: constant acceleration

The methods above all work when the acceleration is constant, and reproduce all the
standard kinematics formulae for constant acceleration. To see this, suppose we have
an object with initial position x0 and velocity v0 at time t = 0, and suppose that the
acceleration is a constant value A. Then we have

dv

dt
= A

so using the antidifferentiation method, we have

v(t) = At+ C .

where C is a constant. To get the correct value v = v0 at t = 0, we must have C = v0,
so we get

v(t) = v0 + At .

From this, we have
dx

dt
= v0 + At ,

so using antidifferentiation again, we find

x(t) = C ′ + v0t+
1

2
At2 .

Since x(0) = x0, we must have C ′ = x0, so we finally obtain the familiar formula

x(t) = x0 + v0t+
1

2
At2 .

It is important to note that this (and other formulae like v21 = v20 + 2Ad) are only
correct if acceleration is constant!
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