How many difference sources of torque are acting on Mark's top?
A) 0
B) 1
C) 2
D) 3
E) 4

During the fictional defence of a French castle, a constant torque $\boldsymbol{\tau}$ is exerted for a time \mathbf{t} on a catapult arm loaded with a cow. If the arm was initially stationary, and the moment of inertia of the cow plus arm about the axis is I, the angular velocity of the arm after time t will be
A) $t \tau / I$
B) tI / τ
C) $\tau \mathrm{I} / \mathrm{t}$
D) $\tau /(\mathrm{It})$
E) I have no idea how to do this. Please take this question away or I shall taunt you a second time.

Extra: if the arm stops at this point, with what speed will the cow fly off?

If the catapult arm (length R) plus cow are rotating about the axis at angular velocity ω just before the arm stops, with what speed does the cow fly off?
A) ω
B) ωR
C) ω / R
D) $\omega / \sqrt{2}$
E) None of the above

Extra: in terms of the mass M , the radius R , and the speed v , what is the angular momentum of the cow about the axis just after it leaves the catapult?

A ball of mass M revolves in a circular path on the end of a string. Using $L=I \omega$, calculate the angular momentum of the ball in terms of M, V, and R .

Which configuration has the largest angular acceleration?

