Name:
Student Number:

Physics 200 Midterm \#1
October 8, 2008
Questions 1-8: Multiple Choice/Short Answer: 1 point each Questions 9-10: Show your work

15 points total

Formula sheet at the back (you can remove it)
multiple choice ANSWERS:

\#1	C
$\# 2$	D
$\# 3$	C
$\# 4$	C
$\# 5$	C
$\# 6$	D
$\# 7$	A
\#8	D

1) The picture at the right represents an observation of an object moving at $v=\sqrt{\frac{3}{4}} c$. Which of the following pictures best represents the actual shape of the object (in its own frame).
A)

B)
(i)
(C)

D)

E)

trans verse distances maffected
\therefore actual height $=$ ob served height
length contraction along direction of motion
\Rightarrow actual width $=2 \times$ observed width
2) An unstable particle has an average lifetime of 10^{-8} seconds in its rest frame. A beam of these particles is produced with speed $4 / 5 \mathrm{c}$. How far on average do the particles travel before decaying?
A) 1.44 m
B) 2.4 m
C) 3 m
D) 4 m

$$
\begin{aligned}
& \qquad \begin{array}{r}
0 \longrightarrow \frac{4}{5} c \\
\begin{array}{r}
\text { Observed } \\
\text { lifetime }
\end{array}
\end{array}=\gamma \times \begin{array}{r}
\text { proper } \\
\text { lifetime }
\end{array} \\
& \text { distance } \\
& \text { traveled }=\frac{5}{3} \times 10^{-8} \mathrm{~s} \\
& \uparrow_{3 \times 10^{8} \mathrm{~m} / \mathrm{s}} \mathrm{C} \times \frac{5}{3} \times 10^{-8} \mathrm{~s}=4 \mathrm{~m}
\end{aligned}
$$

3)

A) Earlier than event 2
B) At the same time as event 2
(C) Later than event 2
D) None of the above: the concepts of earlier and later do not apply when we consider velocities comparable to the speed of light
4) A signal on the ground sends pulses of light directly upwards. If one of these pulses is observed by a plane traveling at 0.5 c parallel to the ground, what speed do the observers in the plane
 measure for the pulse?

A) $\sqrt{c^{2}-(0.5 c)^{2}}$
B) 0.5 c
speed of light $=C$ in AC L frames
(C) c
D) $1.5 c$
E) $\sqrt{c^{2}+(0.5 c)^{2}}$

5) The 98 B-Line bus travels down Granville Street at speed $4 / 5 \mathrm{c}$. At 7:00pm, streetlights on Granville Street all turn on simultaneously (in the frame of the street). In the reference frame of the bus, the streetlights ahead of the bus turn on clocks on bus toward direction of motion
A) At the same time as the streetlights behind the bus observed to read
B) After the streetlights behind the bus earlier times
(C)) Before the streetlights behind the bus

$$
\begin{aligned}
& \text { us } \\
& \text { or: } \quad t^{\prime}=\gamma\left(t \underset{\substack{c}}{(t)}-\frac{v}{c^{2}} x\right) \text { greater for } \\
& \text { lights in } \\
& \text { front. }
\end{aligned}
$$

6) A flying ant traveling at $v=3 / 5 \mathrm{c}$ passes a meter stick. How much time elapses on the ant's clock between the time it passes the front of the stick and the time it passes the back of the stick?
A) $1 \mathrm{~m} / \mathrm{c}$

our clock:
B) $5 / 3 \mathrm{~m} / \mathrm{c}$
C) $25 / 12 \mathrm{~m} / \mathrm{c}$
D) $4 / 3 \mathrm{~m} / \mathrm{c}$
E) $4 / 5 \mathrm{~m} / \mathrm{c}$
ANT's clock obsened to

$$
\text { run slow: } t_{A N T}=\frac{1}{\gamma} t_{\text {RULER }}=\frac{4}{5} \times \frac{5}{3} \mathrm{~m} / 6=\frac{4}{3} \mathrm{~m} / \mathrm{c}
$$

7) In a certain frame of reference, two firecrackers explode at times 10^{-8} seconds apart at locations separated by 4 meters. Which of the following is true:

$$
I=(\Delta x)^{2}-c^{2}(\Delta t)^{2}=(4 \mathrm{~m})^{2}-\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s} \times 10^{-8} \mathrm{~s}\right)^{2}
$$

A) There is a frame of reference in which both firecrackers $=7 \mathrm{~m}^{2}>0$ explode at the same time.
B) There is a frame of reference in which both firecrackers explode at the same location.
C) Both A and B are true. simultaneous.
D) Neither A nor B are true.
0.8 c \qquad

$$
\begin{equation*}
0.5 c \leftarrow \text { (1) } \tag{2}
\end{equation*}
$$

$$
\longrightarrow \hat{x}
$$

8) What is the velocity of ball 1 in the reference frame of ball 2 ?
A) $-0.5 \mathrm{c} \hat{x}$
B) $-0.3 \mathrm{c} \hat{x}$
C) $0.3 \mathrm{c} \hat{x}$
D) $0.5 \mathrm{c} \quad \hat{x}$
E) None of the above

$$
\begin{aligned}
& u^{\prime}= \frac{u-v}{1-\frac{u v}{c^{2}}} \\
& u=-0.5 c \\
& v=-0.8 c \\
& u^{\prime}= \frac{-0.5 c+0.8 c}{1-0.5 \cdot 0.8} \\
&= \frac{0.3 c}{0.6} \\
&= 0.5 c
\end{aligned}
$$

PART II) SHOW YOUR WORK!

9) A ruler with proper length of 6 m travels at $\mathrm{v}=3 / 5 \mathrm{c}$ in the direction along its length. If the clock at the back end of the ruler is observed to read time 0 , what is the clock at the front end of the ruler observed to read at the same instant? Assume that the two clocks are synchronized in the frame of the ruler. (3 points)

FIRST way: Observed length of the ruler will be

$$
6 m \times \frac{1}{\gamma}=6 m \times \frac{4}{4} \frac{4}{5}=4.8 \mathrm{~m}
$$

Time on clock in picture is

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
& =\frac{5}{4}\left(0-\frac{3}{5} c \cdot \frac{4.8 \mathrm{~m}}{c^{2}}\right) \\
& =-\frac{3.6 \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=-1.2 \times 10^{-8} \mathrm{~s}
\end{aligned}
$$

ANOTHER wAy: Call S : frame of ruler S^{\prime} : frame of picture then $V=-\frac{3}{5} c$ (rel velocity between frames)
know: $t^{\prime}=0 \quad x=6 \mathrm{~m}$ wart: t

$$
\text { uSE: } \quad \begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v}{2} x\right) \\
\therefore 0 & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
t & =\frac{G m \cdot v}{t} e^{2}=-1.2 \times 10^{-8} \mathrm{~s}
\end{aligned}
$$

10) A spaceship passes the Earth traveling at speed $4 / 5$ c towards planet Elvis, 4 light years away.
a) In the Earth's frame of reference, planet Elvis suddenly turns blue when the ship is halfway there. In the ship's frame of reference, how far away is the ship from planet Elvis when the planet turns blue? Assume that planet Elvis is stationary in the frame of the Earth. (3 points)

FIRST WAY
Call $x=t=0$ event when ship is halfway between planets.
Planet Elvis turns blue at: $x=2 l y r, t=0$.
In ship's frame, coordinates of this event are

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) \\
&=\frac{5}{3} \times 2 l_{y r} \\
&=\frac{10}{3} l_{y r} \\
& \therefore \text { Planet Elvis is } \frac{10}{3} \mathrm{lyr}_{r} \approx 3.33 \mathrm{l}_{\mathrm{yr}} \text { away. }
\end{aligned}
$$

ANOTHER WAY:
If we said $x=t=0$ was event. where ship passes Earth, then - planet Elvis turns blue at $x=4 l y \mathrm{l}, t=\frac{2 l y r}{4 / 5^{c}}=2.5 \mathrm{yrs}$

- in ship's frame x^{\prime} for this event is

$$
\begin{aligned}
x^{\prime}=\gamma(x-v t) & =\frac{5}{3}\left(4 l y r-2.5 y r s \times \frac{4}{5} c\right) \\
& =\frac{10}{3} l y r . \quad \text { (SAME AS ABOVE) }
\end{aligned}
$$

b) How much do the people on board the ship age between the time planet Elvis turns blue (in their frame) and the time they reach the planet? (1 point)
In the ship's frame, Elvis turns blue when the ship is $\frac{10}{3}$ tyr away, so the time elapsed before they reach planet Elvis is

$$
\begin{aligned}
\Delta t_{\text {SUPP }}=\frac{\Delta x_{\text {SHIP }}}{V_{\text {MANET }}} & =\frac{10 / 3 l y r}{\frac{4}{5} c} \\
& =\frac{25}{6} \text { years }
\end{aligned}
$$

see next page for another solution

ANOTHER WAY:
b) How much do the people on board the ship age between the time planet Elvis turns blue (in their frame) and the time they reach the planet? (1 point) Use coordinates of 1st solution:

Planet Elvis turns blue in ship's frame

$$
\text { at } \quad \begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
& =\frac{5}{3} \cdot\left(-\frac{4}{5} \frac{2 l y r}{c}\right) \\
& =-\frac{8}{3} y r s
\end{aligned}
$$

Ship reaches planet at:

$$
\begin{aligned}
& t=\frac{2 l y r}{\frac{4}{5} c}=2.5 y r s \quad \text { (Earth's frame) } \\
& x=2 l y r
\end{aligned}
$$

In ship's frame:

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v}{c^{2}} x\right) \\
& =\frac{5}{3} \times\left(2.5 \mathrm{yrs}-\frac{4}{5} \cdot \frac{2 l y r}{c}\right) \\
& =1.5 \mathrm{yrs}
\end{aligned}
$$

\therefore The people age 1.5 yrs $+\frac{8}{3}$ yrs

$$
=\frac{25}{6} \mathrm{yrs} \approx 4.17 \mathrm{yrs}
$$

