Clicker: If 0.2mm diameter nylon fishing line is good for catching fish up to 2kg, what thickness of line would you need to catch a 50kg fish?

- A) 0.5mm
- **B)** 1mm
- **C)** 2mm
- D) 5mm
- E) 300mm

EXTRA: By roughly how much would 1m of 0.2mm diameter line be stretched by a 2kg fish?

$$(Y_{nylon} = 3 \text{ GPa})$$

G = giga = 10⁹

Clicker: If 0.2mm diameter nylon fishing line is good for catching fish up to 2kg, what thickness of line would you F is 25x before need to catch a 50kg fish? to got equivalent "safe" stretching, need A 25× before A) 0.5mm 1mm 2mm so dianeter 5x before. **D**) 5mm E) 300mm $\Delta L \approx \frac{1m}{3 \times 10^{9}} \cdot \frac{2 \circ N}{\pi \cdot (10^{-9} m)}$ **EXTRA:** By roughly how much would 1m of 0.2mm diameter line be stretched by a 2kg fish? $(Y_{nylon} = 3 \text{ GPa})$ G = 9iga =

Last time in physics 157...

A steel rod of length L_0 is heated by temperature ΔT .

How much stress (force per unit area) is required to compress the rod back to its original length?

Write an answer in terms of ΔT and the parameters Y, α , L₀ for the rod.

Click A if you have an answer, B if you are stuck.

A steel rod of length L_0 is heated by temperature ΔT and expands. How much stress (force per unit area) is required to compress the rod back to its original length?

Write an answer for the magnitude of F/A in terms of Y, α , L₀, and ΔT .

A) Y $\alpha L_0 \Delta T$ B) Y $\alpha \Delta T$ C) Y L₀ ΔT D) $\alpha L_0 \Delta T$ E) Y αL_0 A steel rod of length L_0 is heated by temperature ΔT and expands. How much stress (force per unit area) is required to compress the rod back to its original length?

Write an answer in terms of Y, α , L₀, and ΔT .

A) Y α L₀ Δ T B) Y α Δ T C) Y L₀ Δ T D) α L₀ Δ T E) Y α L₀

Change in length under
heating is:
$$\Delta L = \alpha L_0 \Delta T$$
To reverse this change,
need $F = Y \cdot \Delta L$
 $A = Y \cdot \Delta L$
 $= F = Y \cdot \alpha \cdot \Delta T$

THERMAL STRESS : forces on a material preventing expansion/contration due to heating/cooling

Clicker: 10m long steel train rails are laid end to end on a winter day (0 °C). If the engineer forgot to leave gaps for thermal expansion, roughly how much force is generated at the ends of each rail due to thermal stress when the temperature reaches 30 °C?

Cross sectional area of rail: $0.01m^2$ $Y_{steel} = 20 \times 10^{10} Pa$ $\alpha_{steel} = 1.2 \times 10^{-5} K^{-1}$

 $\frac{F}{A} = -Y_{\alpha} \Delta T$

A) 700 N B) 7,000 N C) 70,000 N D) 700,000 N E) 7,000,000 N

EXTRA: How much gap should have been left?

Clicker: 10m long steel train rails are laid end to end on a winter day (0 °C). If the engineer forgot to leave gaps for thermal expansion, roughly how much force is generated at the ends of each rail due to thermal stress when the temperature reaches 30 °C?

Cross sectional area of rail: $0.01m^2$ $Y_{steel} = 20 \times 10^{10} Pa$ $\alpha_{steel} = 1.2 \times 10^{-5} K^{-1}$

 $\frac{F}{A} = -Y_{\alpha} \Delta T$

A) 700 N B) 7,000 N C) 70,000 N D) 700,000 N E) 7,000,000 N

F= 102 × 2×10"× 1.2×105 × 30 =7×105

EXTRA: How much gap should have been left? ~ 3.6 mm

Clicker: a copper wire under a tension force of F and at temperature T initially has a length L. If we heat up the wire by ΔT and also change the tension force by ΔF , by how much does the length of the wire change?

Hint: treat the change in length from thermal expansion and the change in length from the force increase separately **Clicker:** a copper wire under a tension force of F and at temperature T initially has a length L. If we heat up the wire by ΔT and also change the tension force by ΔF , by how much does the length of the wire change?

Thermal expansion:

$$(\Delta L)_{T} = \alpha \perp \Delta T$$

Mechanical stretching:
 $\frac{\Delta F}{A} = Y (\frac{\Delta L}{L})_{F} \implies \Delta L_{F} = \frac{\Delta F}{A} \cdot \frac{L}{Y}$
otal expansion: $\Delta L = (\Delta L)_{T} + (\Delta L)_{F}$
 $\implies \Delta L = \alpha \perp \Delta T + \frac{L}{Y} \cdot \frac{\Delta F}{A}$

A harder problem: Stressed Rods

A compound bar consisting of a copper rod with a length of 1 m and cross-section area of 2.00 cm^2 placed end to end with a steel rod with length 1m and cross-section area 2.00 cm^2 . The compound rod is placed between two rigid walls. Initially there is no stress in the bars at room temperature 20° C.

Find the force on each wall at 40° C.

 $\alpha_{steel} = 12 \text{ x } 10^{-6} \text{ K}^{-1}, \ \alpha_{copper} = 17 \text{ x } 10^{-6} \text{ K}^{-1},$ $Y_{steel} = 200 \text{ x } 10^9 \text{ N m}^{-2}, \ Y_{copper} = 110 \text{ x } 10^9 \text{ N m}^{-2}$

STEP1 : visualize what will happen. Draw a before/after picture. Give names to known + nuknown quantities + label diagram. Understand which quantities are changing and which quantities are fixed. Clicker: As the system is heated, we expect that

- A) Both rods will increase in length
- B) Both rods will stay the same length
- C) One rod will get longer and the other rod will get shorter

Clicker: As the system is heated, we expect that

- A) Both rods will increase in length
- B) Both rods will stay the same length

C) One rod will get longer and the other rod will get shorter

STEP1: visua ize what will happen. Draw a before/after picture. Give names to known & nuknown quantities & label diagram. Understand which quantities are changing and which quantities are fixed.

STEP 2: Isolate the parts of the system. For each part, draw before/after free body diagrams making use of Newton's Laws to relate forces.

Question: What are F_1 , F_2 , F_3 and F_4 in terms of F, the magnitude of the forces on the two walls?

Question: What are F_1 , F_2 , F_3 and F_4 in terms of F, the magnitude of the forces on the two walls? $F_1 = F_2$ $F_3 = F_4$ $F_4 = F_2 = F_1$: left bar not accelerating $F_3 = F_2$: Newton's 3rd

Fy=Fz: right bar not accelerating

STEP 4 : collect equations & solve for unknowns

$$\Delta L_{1} + \Delta L_{2} = 0$$

$$\Delta L_{1} = \alpha_{1} L \Delta T - \frac{F}{A} \cdot \frac{L}{Y_{1}}$$

$$\Delta L_{2} = \alpha_{2} L \Delta T - \frac{F}{A} \cdot \frac{L}{Y_{2}}$$
(1)